Sequence Generation Network Based on Hierarchical Attention for Multi-Charge Prediction
The application of multi-label text classification in charge prediction aims at forecasting all kinds of charges related to the content of judgment documents according to the actual situation, which plays a vital role in the judgment of criminal cases. Existing classification algorithms have high ac...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.109315-109324 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The application of multi-label text classification in charge prediction aims at forecasting all kinds of charges related to the content of judgment documents according to the actual situation, which plays a vital role in the judgment of criminal cases. Existing classification algorithms have high accuracy for the single-charge prediction, but their accuracy for the multi-charge prediction is low. To solve this problem, in this paper we introduce a novel hierarchical nested attention structure model with relevant law article information to predict the multi-charge classification of legal judgment documents. By considering the correlation between different charges, the accuracy of multi-charge prediction is greatly improved. Experimental results on real-world datasets demonstrate that our proposed model achieves significant and consistent improvements over other state-of-the-art baselines. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2998486 |