A SPICE Model of Phase Change Memory for Neuromorphic Circuits

A phase change memory (PCM) model suitable for neuromorphic circuit simulations is developed. A crystallization ratio module is used to track the memory state in the SET process, and an active region radius module is developed to track the continuously varying amorphous region in the RESET process....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.95278-95287
Hauptverfasser: Chen, Xuhui, Hu, Huifang, Huang, Xiaoqing, Cai, Weiran, Liu, Ming, Lam, Chung, Lin, Xinnan, Zhang, Lining, Chan, Mansun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95287
container_issue
container_start_page 95278
container_title IEEE access
container_volume 8
creator Chen, Xuhui
Hu, Huifang
Huang, Xiaoqing
Cai, Weiran
Liu, Ming
Lam, Chung
Lin, Xinnan
Zhang, Lining
Chan, Mansun
description A phase change memory (PCM) model suitable for neuromorphic circuit simulations is developed. A crystallization ratio module is used to track the memory state in the SET process, and an active region radius module is developed to track the continuously varying amorphous region in the RESET process. To converge the simulations with bi-stable memory states, a predictive filament module is proposed using a previous state in iterations of nonlinear circuit matrix under a voltage-driven mode. Both DC and transient analysis are successfully converged in circuits with voltage sources. The spiking-time-dependent-plasticity (STDP) characteristics essential for synaptic PCM are successfully reproduced with SPICE simulations verifying the model's promising applications in neuromorphic circuit designs. Further on, the developed PCM model is applied to propose a neuron circuit topology with lateral inhibitions which is more bionic and capable of distinguishing fuzzy memories. Finally, unsupervised learning of handwritten digits on neuromorphic circuits is simulated to verify the integrity of models in a large-scale-integration circuits. For the first time in literature an emerging memory model is developed and applied successfully in neuromorphic circuit designs, and the model is applicable to flexible designs of neuron circuits for further performance improvements.
doi_str_mv 10.1109/ACCESS.2020.2995907
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2995907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9097232</ieee_id><doaj_id>oai_doaj_org_article_e9e47bcbf34941ffb31ace0fd0dba13f</doaj_id><sourcerecordid>2454400343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-55e44540b0a99505cd6b21065372859bb48886133c9fc7c0dce5d5b702e5984f3</originalsourceid><addsrcrecordid>eNpNUE1rwkAQDaWFivUXeFnoOXb2K8leChJsK2gr2J6X3c2sRtS1Gz347xsbKZ3LzDzmvXm8JBlSGFEK6mlclpPlcsSAwYgpJRXkN0mP0UylXPLs9t98nwyaZgNtFS0k817yPCbLxbSckHmocEuCJ4u1aZCUa7NfIZnjLsQz8SGSdzzF0G6Hde1IWUd3qo_NQ3LnzbbBwbX3k6-XyWf5ls4-XqfleJY6AcUxlRKFkAIsmNYgSFdlllHIJM9ZIZW1oiiKjHLulHe5g8qhrKTNgaFUhfC8n0w73SqYjT7EemfiWQdT618gxJU28Vi7LWpUKHLrrOdCCeq95dQ4BF9BZQ3lF63HTusQw_cJm6PehFPct_Y1a00KAC54e8W7KxdD00T0f18p6EvuustdX3LX19xb1rBj1Yj4x1CgcsYZ_wFm-Hvz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454400343</pqid></control><display><type>article</type><title>A SPICE Model of Phase Change Memory for Neuromorphic Circuits</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Xuhui ; Hu, Huifang ; Huang, Xiaoqing ; Cai, Weiran ; Liu, Ming ; Lam, Chung ; Lin, Xinnan ; Zhang, Lining ; Chan, Mansun</creator><creatorcontrib>Chen, Xuhui ; Hu, Huifang ; Huang, Xiaoqing ; Cai, Weiran ; Liu, Ming ; Lam, Chung ; Lin, Xinnan ; Zhang, Lining ; Chan, Mansun</creatorcontrib><description>A phase change memory (PCM) model suitable for neuromorphic circuit simulations is developed. A crystallization ratio module is used to track the memory state in the SET process, and an active region radius module is developed to track the continuously varying amorphous region in the RESET process. To converge the simulations with bi-stable memory states, a predictive filament module is proposed using a previous state in iterations of nonlinear circuit matrix under a voltage-driven mode. Both DC and transient analysis are successfully converged in circuits with voltage sources. The spiking-time-dependent-plasticity (STDP) characteristics essential for synaptic PCM are successfully reproduced with SPICE simulations verifying the model's promising applications in neuromorphic circuit designs. Further on, the developed PCM model is applied to propose a neuron circuit topology with lateral inhibitions which is more bionic and capable of distinguishing fuzzy memories. Finally, unsupervised learning of handwritten digits on neuromorphic circuits is simulated to verify the integrity of models in a large-scale-integration circuits. For the first time in literature an emerging memory model is developed and applied successfully in neuromorphic circuit designs, and the model is applicable to flexible designs of neuron circuits for further performance improvements.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2995907</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biological neural networks ; Biological system modeling ; Bionics ; Circuit design ; Circuits ; Convergence ; Crystallization ; Electric potential ; Electrodes ; Handwriting ; Integrated circuit modeling ; Mathematical model ; Modules ; Neuromorphic circuits ; Neuromorphics ; Phase change materials ; phase change memory ; Simulation ; SPICE model ; spike-time-dependent plasticity ; spiking neural networks ; Time dependence ; Topology ; Transient analysis ; Voltage</subject><ispartof>IEEE access, 2020, Vol.8, p.95278-95287</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-55e44540b0a99505cd6b21065372859bb48886133c9fc7c0dce5d5b702e5984f3</citedby><cites>FETCH-LOGICAL-c408t-55e44540b0a99505cd6b21065372859bb48886133c9fc7c0dce5d5b702e5984f3</cites><orcidid>0000-0002-3587-0183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9097232$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Chen, Xuhui</creatorcontrib><creatorcontrib>Hu, Huifang</creatorcontrib><creatorcontrib>Huang, Xiaoqing</creatorcontrib><creatorcontrib>Cai, Weiran</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Lam, Chung</creatorcontrib><creatorcontrib>Lin, Xinnan</creatorcontrib><creatorcontrib>Zhang, Lining</creatorcontrib><creatorcontrib>Chan, Mansun</creatorcontrib><title>A SPICE Model of Phase Change Memory for Neuromorphic Circuits</title><title>IEEE access</title><addtitle>Access</addtitle><description>A phase change memory (PCM) model suitable for neuromorphic circuit simulations is developed. A crystallization ratio module is used to track the memory state in the SET process, and an active region radius module is developed to track the continuously varying amorphous region in the RESET process. To converge the simulations with bi-stable memory states, a predictive filament module is proposed using a previous state in iterations of nonlinear circuit matrix under a voltage-driven mode. Both DC and transient analysis are successfully converged in circuits with voltage sources. The spiking-time-dependent-plasticity (STDP) characteristics essential for synaptic PCM are successfully reproduced with SPICE simulations verifying the model's promising applications in neuromorphic circuit designs. Further on, the developed PCM model is applied to propose a neuron circuit topology with lateral inhibitions which is more bionic and capable of distinguishing fuzzy memories. Finally, unsupervised learning of handwritten digits on neuromorphic circuits is simulated to verify the integrity of models in a large-scale-integration circuits. For the first time in literature an emerging memory model is developed and applied successfully in neuromorphic circuit designs, and the model is applicable to flexible designs of neuron circuits for further performance improvements.</description><subject>Biological neural networks</subject><subject>Biological system modeling</subject><subject>Bionics</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>Convergence</subject><subject>Crystallization</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Handwriting</subject><subject>Integrated circuit modeling</subject><subject>Mathematical model</subject><subject>Modules</subject><subject>Neuromorphic circuits</subject><subject>Neuromorphics</subject><subject>Phase change materials</subject><subject>phase change memory</subject><subject>Simulation</subject><subject>SPICE model</subject><subject>spike-time-dependent plasticity</subject><subject>spiking neural networks</subject><subject>Time dependence</subject><subject>Topology</subject><subject>Transient analysis</subject><subject>Voltage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1rwkAQDaWFivUXeFnoOXb2K8leChJsK2gr2J6X3c2sRtS1Gz347xsbKZ3LzDzmvXm8JBlSGFEK6mlclpPlcsSAwYgpJRXkN0mP0UylXPLs9t98nwyaZgNtFS0k817yPCbLxbSckHmocEuCJ4u1aZCUa7NfIZnjLsQz8SGSdzzF0G6Hde1IWUd3qo_NQ3LnzbbBwbX3k6-XyWf5ls4-XqfleJY6AcUxlRKFkAIsmNYgSFdlllHIJM9ZIZW1oiiKjHLulHe5g8qhrKTNgaFUhfC8n0w73SqYjT7EemfiWQdT618gxJU28Vi7LWpUKHLrrOdCCeq95dQ4BF9BZQ3lF63HTusQw_cJm6PehFPct_Y1a00KAC54e8W7KxdD00T0f18p6EvuustdX3LX19xb1rBj1Yj4x1CgcsYZ_wFm-Hvz</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Chen, Xuhui</creator><creator>Hu, Huifang</creator><creator>Huang, Xiaoqing</creator><creator>Cai, Weiran</creator><creator>Liu, Ming</creator><creator>Lam, Chung</creator><creator>Lin, Xinnan</creator><creator>Zhang, Lining</creator><creator>Chan, Mansun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3587-0183</orcidid></search><sort><creationdate>2020</creationdate><title>A SPICE Model of Phase Change Memory for Neuromorphic Circuits</title><author>Chen, Xuhui ; Hu, Huifang ; Huang, Xiaoqing ; Cai, Weiran ; Liu, Ming ; Lam, Chung ; Lin, Xinnan ; Zhang, Lining ; Chan, Mansun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-55e44540b0a99505cd6b21065372859bb48886133c9fc7c0dce5d5b702e5984f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological neural networks</topic><topic>Biological system modeling</topic><topic>Bionics</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>Convergence</topic><topic>Crystallization</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Handwriting</topic><topic>Integrated circuit modeling</topic><topic>Mathematical model</topic><topic>Modules</topic><topic>Neuromorphic circuits</topic><topic>Neuromorphics</topic><topic>Phase change materials</topic><topic>phase change memory</topic><topic>Simulation</topic><topic>SPICE model</topic><topic>spike-time-dependent plasticity</topic><topic>spiking neural networks</topic><topic>Time dependence</topic><topic>Topology</topic><topic>Transient analysis</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuhui</creatorcontrib><creatorcontrib>Hu, Huifang</creatorcontrib><creatorcontrib>Huang, Xiaoqing</creatorcontrib><creatorcontrib>Cai, Weiran</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Lam, Chung</creatorcontrib><creatorcontrib>Lin, Xinnan</creatorcontrib><creatorcontrib>Zhang, Lining</creatorcontrib><creatorcontrib>Chan, Mansun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xuhui</au><au>Hu, Huifang</au><au>Huang, Xiaoqing</au><au>Cai, Weiran</au><au>Liu, Ming</au><au>Lam, Chung</au><au>Lin, Xinnan</au><au>Zhang, Lining</au><au>Chan, Mansun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A SPICE Model of Phase Change Memory for Neuromorphic Circuits</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>95278</spage><epage>95287</epage><pages>95278-95287</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A phase change memory (PCM) model suitable for neuromorphic circuit simulations is developed. A crystallization ratio module is used to track the memory state in the SET process, and an active region radius module is developed to track the continuously varying amorphous region in the RESET process. To converge the simulations with bi-stable memory states, a predictive filament module is proposed using a previous state in iterations of nonlinear circuit matrix under a voltage-driven mode. Both DC and transient analysis are successfully converged in circuits with voltage sources. The spiking-time-dependent-plasticity (STDP) characteristics essential for synaptic PCM are successfully reproduced with SPICE simulations verifying the model's promising applications in neuromorphic circuit designs. Further on, the developed PCM model is applied to propose a neuron circuit topology with lateral inhibitions which is more bionic and capable of distinguishing fuzzy memories. Finally, unsupervised learning of handwritten digits on neuromorphic circuits is simulated to verify the integrity of models in a large-scale-integration circuits. For the first time in literature an emerging memory model is developed and applied successfully in neuromorphic circuit designs, and the model is applicable to flexible designs of neuron circuits for further performance improvements.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2995907</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3587-0183</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.95278-95287
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_2995907
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Biological neural networks
Biological system modeling
Bionics
Circuit design
Circuits
Convergence
Crystallization
Electric potential
Electrodes
Handwriting
Integrated circuit modeling
Mathematical model
Modules
Neuromorphic circuits
Neuromorphics
Phase change materials
phase change memory
Simulation
SPICE model
spike-time-dependent plasticity
spiking neural networks
Time dependence
Topology
Transient analysis
Voltage
title A SPICE Model of Phase Change Memory for Neuromorphic Circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20SPICE%20Model%20of%20Phase%20Change%20Memory%20for%20Neuromorphic%20Circuits&rft.jtitle=IEEE%20access&rft.au=Chen,%20Xuhui&rft.date=2020&rft.volume=8&rft.spage=95278&rft.epage=95287&rft.pages=95278-95287&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2995907&rft_dat=%3Cproquest_cross%3E2454400343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454400343&rft_id=info:pmid/&rft_ieee_id=9097232&rft_doaj_id=oai_doaj_org_article_e9e47bcbf34941ffb31ace0fd0dba13f&rfr_iscdi=true