Truly Generalizable Radiograph Segmentation With Conditional Domain Adaptation

Digitization techniques for biomedical images yield disparate visual patterns in radiological exams. These pattern differences, which can be viewed as a domain-shift problem, may hamper the use of data-driven approaches for inference over these images, such as Deep Neural Networks. Another noticeabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.84037-84062
Hauptverfasser: Oliveira, Hugo N., Ferreira, Edemir, Santos, Jefersson A. Dos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84062
container_issue
container_start_page 84037
container_title IEEE access
container_volume 8
creator Oliveira, Hugo N.
Ferreira, Edemir
Santos, Jefersson A. Dos
description Digitization techniques for biomedical images yield disparate visual patterns in radiological exams. These pattern differences, which can be viewed as a domain-shift problem, may hamper the use of data-driven approaches for inference over these images, such as Deep Neural Networks. Another noticeable difficulty in this field is the lack of labeled data, even though in many cases there is an abundance of unlabeled data available. Therefore, an important step in improving the generalization capabilities of these methods and mitigate domain-shift effects is to perform unsupervised or semi-supervised adaptation between different domains of biomedical images. In this work, we propose a novel approach for segmentation of biomedical images based on Generative Adversarial Networks. The proposed method, named Conditional Domain Adaptation Generative Adversarial Network (CoDAGAN), merges unsupervised networks with supervised deep semantic segmentation architectures in order to create a semi-supervised method capable of learning from both unlabeled and labeled data, whenever labeling is available. We conducted experiments to compare our method with traditional and state-of-the-art baselines by using several domains, datasets, and segmentation tasks. The proposed method yielded consistently better results than the baselines in scarce labeled data scenarios, achieving Jaccard values greater than 0.9 and good segmentation quality in most tasks. Unsupervised Domain Adaptation results were observed to be close to the Fully Supervised Domain Adaptation used in the traditional procedure of fine-tuning pretrained networks.
doi_str_mv 10.1109/ACCESS.2020.2991688
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2991688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9084116</ieee_id><doaj_id>oai_doaj_org_article_bcb755d509e74ceca7904f38d95b78e9</doaj_id><sourcerecordid>2454092600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-f492d918922b2c6c941a622f6a3ea921592fe0064faae12b69bebeb2e475c3773</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaKgaH9BLwHPrbub3U3mWGLVQlGwFY_LZDOpW9Js3aQH_fWmRoozh_ngvTcML4rGnE05Z3A3y_P5ajUVTLCpAOA6y86iK8E1TBKV6PN__WU0atst6yPrVyq9ip7X4VB_xY_UUMDafWNRU_yKpfObgPuPeEWbHTUdds438bvrPuLcN6U7jljH936HrolnJe4HyE10UWHd0uivXkdvD_N1_jRZvjwu8tlyYiXLukklQZTAMxCiEFZbkBy1EJXGhBAEVyAqYkzLCpG4KDQU1KcgmSqbpGlyHS0G3dLj1uyD22H4Mh6d-V34sDEYOmdrMoUtUqVKxYBSacliCkxWSVaCKtKMoNe6HbT2wX8eqO3M1h9C_15rhFSSgdCM9ahkQNng2zZQdbrKmTn6YAYfzNEH8-dDzxoPLEdEJwawTHKukx_vJ4Pb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454092600</pqid></control><display><type>article</type><title>Truly Generalizable Radiograph Segmentation With Conditional Domain Adaptation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Oliveira, Hugo N. ; Ferreira, Edemir ; Santos, Jefersson A. Dos</creator><creatorcontrib>Oliveira, Hugo N. ; Ferreira, Edemir ; Santos, Jefersson A. Dos</creatorcontrib><description>Digitization techniques for biomedical images yield disparate visual patterns in radiological exams. These pattern differences, which can be viewed as a domain-shift problem, may hamper the use of data-driven approaches for inference over these images, such as Deep Neural Networks. Another noticeable difficulty in this field is the lack of labeled data, even though in many cases there is an abundance of unlabeled data available. Therefore, an important step in improving the generalization capabilities of these methods and mitigate domain-shift effects is to perform unsupervised or semi-supervised adaptation between different domains of biomedical images. In this work, we propose a novel approach for segmentation of biomedical images based on Generative Adversarial Networks. The proposed method, named Conditional Domain Adaptation Generative Adversarial Network (CoDAGAN), merges unsupervised networks with supervised deep semantic segmentation architectures in order to create a semi-supervised method capable of learning from both unlabeled and labeled data, whenever labeling is available. We conducted experiments to compare our method with traditional and state-of-the-art baselines by using several domains, datasets, and segmentation tasks. The proposed method yielded consistently better results than the baselines in scarce labeled data scenarios, achieving Jaccard values greater than 0.9 and good segmentation quality in most tasks. Unsupervised Domain Adaptation results were observed to be close to the Fully Supervised Domain Adaptation used in the traditional procedure of fine-tuning pretrained networks.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2991688</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation ; Artificial neural networks ; biomedical images ; Biomedical imaging ; Deep learning ; domain adaptation ; Domains ; Gallium nitride ; Image segmentation ; image translation ; Machine learning ; Medical imaging ; Radiographs ; Radiography ; semantic segmentation ; Semantics ; semi-supervised learning ; Task analysis ; Visualization</subject><ispartof>IEEE access, 2020, Vol.8, p.84037-84062</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-f492d918922b2c6c941a622f6a3ea921592fe0064faae12b69bebeb2e475c3773</citedby><cites>FETCH-LOGICAL-c408t-f492d918922b2c6c941a622f6a3ea921592fe0064faae12b69bebeb2e475c3773</cites><orcidid>0000-0001-8760-9801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9084116$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Oliveira, Hugo N.</creatorcontrib><creatorcontrib>Ferreira, Edemir</creatorcontrib><creatorcontrib>Santos, Jefersson A. Dos</creatorcontrib><title>Truly Generalizable Radiograph Segmentation With Conditional Domain Adaptation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Digitization techniques for biomedical images yield disparate visual patterns in radiological exams. These pattern differences, which can be viewed as a domain-shift problem, may hamper the use of data-driven approaches for inference over these images, such as Deep Neural Networks. Another noticeable difficulty in this field is the lack of labeled data, even though in many cases there is an abundance of unlabeled data available. Therefore, an important step in improving the generalization capabilities of these methods and mitigate domain-shift effects is to perform unsupervised or semi-supervised adaptation between different domains of biomedical images. In this work, we propose a novel approach for segmentation of biomedical images based on Generative Adversarial Networks. The proposed method, named Conditional Domain Adaptation Generative Adversarial Network (CoDAGAN), merges unsupervised networks with supervised deep semantic segmentation architectures in order to create a semi-supervised method capable of learning from both unlabeled and labeled data, whenever labeling is available. We conducted experiments to compare our method with traditional and state-of-the-art baselines by using several domains, datasets, and segmentation tasks. The proposed method yielded consistently better results than the baselines in scarce labeled data scenarios, achieving Jaccard values greater than 0.9 and good segmentation quality in most tasks. Unsupervised Domain Adaptation results were observed to be close to the Fully Supervised Domain Adaptation used in the traditional procedure of fine-tuning pretrained networks.</description><subject>Adaptation</subject><subject>Artificial neural networks</subject><subject>biomedical images</subject><subject>Biomedical imaging</subject><subject>Deep learning</subject><subject>domain adaptation</subject><subject>Domains</subject><subject>Gallium nitride</subject><subject>Image segmentation</subject><subject>image translation</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Radiographs</subject><subject>Radiography</subject><subject>semantic segmentation</subject><subject>Semantics</subject><subject>semi-supervised learning</subject><subject>Task analysis</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1Lw0AQDaKgaH9BLwHPrbub3U3mWGLVQlGwFY_LZDOpW9Js3aQH_fWmRoozh_ngvTcML4rGnE05Z3A3y_P5ajUVTLCpAOA6y86iK8E1TBKV6PN__WU0atst6yPrVyq9ip7X4VB_xY_UUMDafWNRU_yKpfObgPuPeEWbHTUdds438bvrPuLcN6U7jljH936HrolnJe4HyE10UWHd0uivXkdvD_N1_jRZvjwu8tlyYiXLukklQZTAMxCiEFZbkBy1EJXGhBAEVyAqYkzLCpG4KDQU1KcgmSqbpGlyHS0G3dLj1uyD22H4Mh6d-V34sDEYOmdrMoUtUqVKxYBSacliCkxWSVaCKtKMoNe6HbT2wX8eqO3M1h9C_15rhFSSgdCM9ahkQNng2zZQdbrKmTn6YAYfzNEH8-dDzxoPLEdEJwawTHKukx_vJ4Pb</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Oliveira, Hugo N.</creator><creator>Ferreira, Edemir</creator><creator>Santos, Jefersson A. Dos</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8760-9801</orcidid></search><sort><creationdate>2020</creationdate><title>Truly Generalizable Radiograph Segmentation With Conditional Domain Adaptation</title><author>Oliveira, Hugo N. ; Ferreira, Edemir ; Santos, Jefersson A. Dos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-f492d918922b2c6c941a622f6a3ea921592fe0064faae12b69bebeb2e475c3773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Artificial neural networks</topic><topic>biomedical images</topic><topic>Biomedical imaging</topic><topic>Deep learning</topic><topic>domain adaptation</topic><topic>Domains</topic><topic>Gallium nitride</topic><topic>Image segmentation</topic><topic>image translation</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Radiographs</topic><topic>Radiography</topic><topic>semantic segmentation</topic><topic>Semantics</topic><topic>semi-supervised learning</topic><topic>Task analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliveira, Hugo N.</creatorcontrib><creatorcontrib>Ferreira, Edemir</creatorcontrib><creatorcontrib>Santos, Jefersson A. Dos</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliveira, Hugo N.</au><au>Ferreira, Edemir</au><au>Santos, Jefersson A. Dos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Truly Generalizable Radiograph Segmentation With Conditional Domain Adaptation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>84037</spage><epage>84062</epage><pages>84037-84062</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Digitization techniques for biomedical images yield disparate visual patterns in radiological exams. These pattern differences, which can be viewed as a domain-shift problem, may hamper the use of data-driven approaches for inference over these images, such as Deep Neural Networks. Another noticeable difficulty in this field is the lack of labeled data, even though in many cases there is an abundance of unlabeled data available. Therefore, an important step in improving the generalization capabilities of these methods and mitigate domain-shift effects is to perform unsupervised or semi-supervised adaptation between different domains of biomedical images. In this work, we propose a novel approach for segmentation of biomedical images based on Generative Adversarial Networks. The proposed method, named Conditional Domain Adaptation Generative Adversarial Network (CoDAGAN), merges unsupervised networks with supervised deep semantic segmentation architectures in order to create a semi-supervised method capable of learning from both unlabeled and labeled data, whenever labeling is available. We conducted experiments to compare our method with traditional and state-of-the-art baselines by using several domains, datasets, and segmentation tasks. The proposed method yielded consistently better results than the baselines in scarce labeled data scenarios, achieving Jaccard values greater than 0.9 and good segmentation quality in most tasks. Unsupervised Domain Adaptation results were observed to be close to the Fully Supervised Domain Adaptation used in the traditional procedure of fine-tuning pretrained networks.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2991688</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-8760-9801</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.84037-84062
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_2991688
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Adaptation
Artificial neural networks
biomedical images
Biomedical imaging
Deep learning
domain adaptation
Domains
Gallium nitride
Image segmentation
image translation
Machine learning
Medical imaging
Radiographs
Radiography
semantic segmentation
Semantics
semi-supervised learning
Task analysis
Visualization
title Truly Generalizable Radiograph Segmentation With Conditional Domain Adaptation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Truly%20Generalizable%20Radiograph%20Segmentation%20With%20Conditional%20Domain%20Adaptation&rft.jtitle=IEEE%20access&rft.au=Oliveira,%20Hugo%20N.&rft.date=2020&rft.volume=8&rft.spage=84037&rft.epage=84062&rft.pages=84037-84062&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2991688&rft_dat=%3Cproquest_cross%3E2454092600%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454092600&rft_id=info:pmid/&rft_ieee_id=9084116&rft_doaj_id=oai_doaj_org_article_bcb755d509e74ceca7904f38d95b78e9&rfr_iscdi=true