Passive and Active Wireless Device Secure Identification

Secure wireless device identification is necessary if we want to ensure that any transmitted data reach only a desired receiver. However the fact that wireless communications are by nature broadcast creates unique challenges such as identity theft, eavesdropping for data interception, jamming attack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.83312-83320
Hauptverfasser: Delgado, Oscar, Kechtban, Louai, Lugan, Sebastien, Macq, Benoit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 83320
container_issue
container_start_page 83312
container_title IEEE access
container_volume 8
creator Delgado, Oscar
Kechtban, Louai
Lugan, Sebastien
Macq, Benoit
description Secure wireless device identification is necessary if we want to ensure that any transmitted data reach only a desired receiver. However the fact that wireless communications are by nature broadcast creates unique challenges such as identity theft, eavesdropping for data interception, jamming attacks to disrupt legitimate transmissions, etc. This paper proposes a new integrated radioprint framework (IRID) that has two main components. First, we propose a machine learning-based radio identification solution that relies on hardware variabilities of internal components of the transmitter caused during manufacturing, allowing us to achieve passive device identification. Second, we introduce a new kind of covert channel, based on variations in the emitted signal strength, which allows us to implement unique active device identification. We evaluate our proposed framework on an experimental test-bed of 20 identical WiFi devices. Although our experiments deal only with IEEE 802.11b, the approach can easily be extended to any wireless protocol. The experimental results show that our proposed solution can differentiate between network devices with accuracy in excess of 99% on the basis of a standard-compliant implementation.
doi_str_mv 10.1109/ACCESS.2020.2991649
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2991649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9082628</ieee_id><doaj_id>oai_doaj_org_article_5e3f416dc6074bd5ae3b1cfb69aead05</doaj_id><sourcerecordid>2454092781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-9de004cae63d852ec882bd114e0d398194901d3a037ee761e983707287e6d9e03</originalsourceid><addsrcrecordid>eNpNUF1LAzEQPETBUvsL-nLg89VNcvl6LLVqoaBQxceQS_Ykpd7V5Frw33v1irgvOwwzs8tk2ZTAjBDQd_PFYrnZzChQmFGtiSj1RTaiROiCcSYu_-HrbJLSFvpRPcXlKFMvNqVwxNw2Pp-77gTfQ8QdppTf4zE4zDfoDhHzlcemC3Vwtgttc5Nd1XaXcHLe4-ztYfm6eCrWz4-rxXxdOMZVV2iPAKWzKJhXnKJTilaekBLBM62ILjUQzywwiSgFQa2YBEmVROE1AhtnqyHXt3Zr9jF82vhtWhvML9HGD2NjF9wODUdWl0R4J0CWlecWWUVcXQlt0XrgfdbtkLWP7dcBU2e27SE2_fuGlrwETaUivYoNKhfblCLWf1cJmFPjZmjcnBo358Z713RwBUT8c2hQVFDFfgDHa3rX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454092781</pqid></control><display><type>article</type><title>Passive and Active Wireless Device Secure Identification</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Delgado, Oscar ; Kechtban, Louai ; Lugan, Sebastien ; Macq, Benoit</creator><creatorcontrib>Delgado, Oscar ; Kechtban, Louai ; Lugan, Sebastien ; Macq, Benoit</creatorcontrib><description>Secure wireless device identification is necessary if we want to ensure that any transmitted data reach only a desired receiver. However the fact that wireless communications are by nature broadcast creates unique challenges such as identity theft, eavesdropping for data interception, jamming attacks to disrupt legitimate transmissions, etc. This paper proposes a new integrated radioprint framework (IRID) that has two main components. First, we propose a machine learning-based radio identification solution that relies on hardware variabilities of internal components of the transmitter caused during manufacturing, allowing us to achieve passive device identification. Second, we introduce a new kind of covert channel, based on variations in the emitted signal strength, which allows us to implement unique active device identification. We evaluate our proposed framework on an experimental test-bed of 20 identical WiFi devices. Although our experiments deal only with IEEE 802.11b, the approach can easily be extended to any wireless protocol. The experimental results show that our proposed solution can differentiate between network devices with accuracy in excess of 99% on the basis of a standard-compliant implementation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2991649</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>80211 ; Authentication ; Communication system security ; covert channel ; Eavesdropping ; Electronic devices ; emerging technologies ; Hardware ; Interception ; Jamming ; Machine learning ; neural network ; Object recognition ; Physical unclonable function ; PUF ; Radioprint ; Signal strength ; Theft ; Uniqueness ; WiFi ; Wireless communication ; Wireless communications ; wireless security</subject><ispartof>IEEE access, 2020, Vol.8, p.83312-83320</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-9de004cae63d852ec882bd114e0d398194901d3a037ee761e983707287e6d9e03</cites><orcidid>0000-0002-7243-4778 ; 0000-0001-9574-0850 ; 0000-0003-1264-0112 ; 0000-0002-3553-987X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9082628$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Delgado, Oscar</creatorcontrib><creatorcontrib>Kechtban, Louai</creatorcontrib><creatorcontrib>Lugan, Sebastien</creatorcontrib><creatorcontrib>Macq, Benoit</creatorcontrib><title>Passive and Active Wireless Device Secure Identification</title><title>IEEE access</title><addtitle>Access</addtitle><description>Secure wireless device identification is necessary if we want to ensure that any transmitted data reach only a desired receiver. However the fact that wireless communications are by nature broadcast creates unique challenges such as identity theft, eavesdropping for data interception, jamming attacks to disrupt legitimate transmissions, etc. This paper proposes a new integrated radioprint framework (IRID) that has two main components. First, we propose a machine learning-based radio identification solution that relies on hardware variabilities of internal components of the transmitter caused during manufacturing, allowing us to achieve passive device identification. Second, we introduce a new kind of covert channel, based on variations in the emitted signal strength, which allows us to implement unique active device identification. We evaluate our proposed framework on an experimental test-bed of 20 identical WiFi devices. Although our experiments deal only with IEEE 802.11b, the approach can easily be extended to any wireless protocol. The experimental results show that our proposed solution can differentiate between network devices with accuracy in excess of 99% on the basis of a standard-compliant implementation.</description><subject>80211</subject><subject>Authentication</subject><subject>Communication system security</subject><subject>covert channel</subject><subject>Eavesdropping</subject><subject>Electronic devices</subject><subject>emerging technologies</subject><subject>Hardware</subject><subject>Interception</subject><subject>Jamming</subject><subject>Machine learning</subject><subject>neural network</subject><subject>Object recognition</subject><subject>Physical unclonable function</subject><subject>PUF</subject><subject>Radioprint</subject><subject>Signal strength</subject><subject>Theft</subject><subject>Uniqueness</subject><subject>WiFi</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>wireless security</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUF1LAzEQPETBUvsL-nLg89VNcvl6LLVqoaBQxceQS_Ykpd7V5Frw33v1irgvOwwzs8tk2ZTAjBDQd_PFYrnZzChQmFGtiSj1RTaiROiCcSYu_-HrbJLSFvpRPcXlKFMvNqVwxNw2Pp-77gTfQ8QdppTf4zE4zDfoDhHzlcemC3Vwtgttc5Nd1XaXcHLe4-ztYfm6eCrWz4-rxXxdOMZVV2iPAKWzKJhXnKJTilaekBLBM62ILjUQzywwiSgFQa2YBEmVROE1AhtnqyHXt3Zr9jF82vhtWhvML9HGD2NjF9wODUdWl0R4J0CWlecWWUVcXQlt0XrgfdbtkLWP7dcBU2e27SE2_fuGlrwETaUivYoNKhfblCLWf1cJmFPjZmjcnBo358Z713RwBUT8c2hQVFDFfgDHa3rX</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Delgado, Oscar</creator><creator>Kechtban, Louai</creator><creator>Lugan, Sebastien</creator><creator>Macq, Benoit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7243-4778</orcidid><orcidid>https://orcid.org/0000-0001-9574-0850</orcidid><orcidid>https://orcid.org/0000-0003-1264-0112</orcidid><orcidid>https://orcid.org/0000-0002-3553-987X</orcidid></search><sort><creationdate>2020</creationdate><title>Passive and Active Wireless Device Secure Identification</title><author>Delgado, Oscar ; Kechtban, Louai ; Lugan, Sebastien ; Macq, Benoit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-9de004cae63d852ec882bd114e0d398194901d3a037ee761e983707287e6d9e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>80211</topic><topic>Authentication</topic><topic>Communication system security</topic><topic>covert channel</topic><topic>Eavesdropping</topic><topic>Electronic devices</topic><topic>emerging technologies</topic><topic>Hardware</topic><topic>Interception</topic><topic>Jamming</topic><topic>Machine learning</topic><topic>neural network</topic><topic>Object recognition</topic><topic>Physical unclonable function</topic><topic>PUF</topic><topic>Radioprint</topic><topic>Signal strength</topic><topic>Theft</topic><topic>Uniqueness</topic><topic>WiFi</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>wireless security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delgado, Oscar</creatorcontrib><creatorcontrib>Kechtban, Louai</creatorcontrib><creatorcontrib>Lugan, Sebastien</creatorcontrib><creatorcontrib>Macq, Benoit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delgado, Oscar</au><au>Kechtban, Louai</au><au>Lugan, Sebastien</au><au>Macq, Benoit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passive and Active Wireless Device Secure Identification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>83312</spage><epage>83320</epage><pages>83312-83320</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Secure wireless device identification is necessary if we want to ensure that any transmitted data reach only a desired receiver. However the fact that wireless communications are by nature broadcast creates unique challenges such as identity theft, eavesdropping for data interception, jamming attacks to disrupt legitimate transmissions, etc. This paper proposes a new integrated radioprint framework (IRID) that has two main components. First, we propose a machine learning-based radio identification solution that relies on hardware variabilities of internal components of the transmitter caused during manufacturing, allowing us to achieve passive device identification. Second, we introduce a new kind of covert channel, based on variations in the emitted signal strength, which allows us to implement unique active device identification. We evaluate our proposed framework on an experimental test-bed of 20 identical WiFi devices. Although our experiments deal only with IEEE 802.11b, the approach can easily be extended to any wireless protocol. The experimental results show that our proposed solution can differentiate between network devices with accuracy in excess of 99% on the basis of a standard-compliant implementation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2991649</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7243-4778</orcidid><orcidid>https://orcid.org/0000-0001-9574-0850</orcidid><orcidid>https://orcid.org/0000-0003-1264-0112</orcidid><orcidid>https://orcid.org/0000-0002-3553-987X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.83312-83320
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_2991649
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects 80211
Authentication
Communication system security
covert channel
Eavesdropping
Electronic devices
emerging technologies
Hardware
Interception
Jamming
Machine learning
neural network
Object recognition
Physical unclonable function
PUF
Radioprint
Signal strength
Theft
Uniqueness
WiFi
Wireless communication
Wireless communications
wireless security
title Passive and Active Wireless Device Secure Identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passive%20and%20Active%20Wireless%20Device%20Secure%20Identification&rft.jtitle=IEEE%20access&rft.au=Delgado,%20Oscar&rft.date=2020&rft.volume=8&rft.spage=83312&rft.epage=83320&rft.pages=83312-83320&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2991649&rft_dat=%3Cproquest_cross%3E2454092781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454092781&rft_id=info:pmid/&rft_ieee_id=9082628&rft_doaj_id=oai_doaj_org_article_5e3f416dc6074bd5ae3b1cfb69aead05&rfr_iscdi=true