Passive and Active Wireless Device Secure Identification
Secure wireless device identification is necessary if we want to ensure that any transmitted data reach only a desired receiver. However the fact that wireless communications are by nature broadcast creates unique challenges such as identity theft, eavesdropping for data interception, jamming attack...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.83312-83320 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83320 |
---|---|
container_issue | |
container_start_page | 83312 |
container_title | IEEE access |
container_volume | 8 |
creator | Delgado, Oscar Kechtban, Louai Lugan, Sebastien Macq, Benoit |
description | Secure wireless device identification is necessary if we want to ensure that any transmitted data reach only a desired receiver. However the fact that wireless communications are by nature broadcast creates unique challenges such as identity theft, eavesdropping for data interception, jamming attacks to disrupt legitimate transmissions, etc. This paper proposes a new integrated radioprint framework (IRID) that has two main components. First, we propose a machine learning-based radio identification solution that relies on hardware variabilities of internal components of the transmitter caused during manufacturing, allowing us to achieve passive device identification. Second, we introduce a new kind of covert channel, based on variations in the emitted signal strength, which allows us to implement unique active device identification. We evaluate our proposed framework on an experimental test-bed of 20 identical WiFi devices. Although our experiments deal only with IEEE 802.11b, the approach can easily be extended to any wireless protocol. The experimental results show that our proposed solution can differentiate between network devices with accuracy in excess of 99% on the basis of a standard-compliant implementation. |
doi_str_mv | 10.1109/ACCESS.2020.2991649 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2991649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9082628</ieee_id><doaj_id>oai_doaj_org_article_5e3f416dc6074bd5ae3b1cfb69aead05</doaj_id><sourcerecordid>2454092781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-9de004cae63d852ec882bd114e0d398194901d3a037ee761e983707287e6d9e03</originalsourceid><addsrcrecordid>eNpNUF1LAzEQPETBUvsL-nLg89VNcvl6LLVqoaBQxceQS_Ykpd7V5Frw33v1irgvOwwzs8tk2ZTAjBDQd_PFYrnZzChQmFGtiSj1RTaiROiCcSYu_-HrbJLSFvpRPcXlKFMvNqVwxNw2Pp-77gTfQ8QdppTf4zE4zDfoDhHzlcemC3Vwtgttc5Nd1XaXcHLe4-ztYfm6eCrWz4-rxXxdOMZVV2iPAKWzKJhXnKJTilaekBLBM62ILjUQzywwiSgFQa2YBEmVROE1AhtnqyHXt3Zr9jF82vhtWhvML9HGD2NjF9wODUdWl0R4J0CWlecWWUVcXQlt0XrgfdbtkLWP7dcBU2e27SE2_fuGlrwETaUivYoNKhfblCLWf1cJmFPjZmjcnBo358Z713RwBUT8c2hQVFDFfgDHa3rX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454092781</pqid></control><display><type>article</type><title>Passive and Active Wireless Device Secure Identification</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Delgado, Oscar ; Kechtban, Louai ; Lugan, Sebastien ; Macq, Benoit</creator><creatorcontrib>Delgado, Oscar ; Kechtban, Louai ; Lugan, Sebastien ; Macq, Benoit</creatorcontrib><description>Secure wireless device identification is necessary if we want to ensure that any transmitted data reach only a desired receiver. However the fact that wireless communications are by nature broadcast creates unique challenges such as identity theft, eavesdropping for data interception, jamming attacks to disrupt legitimate transmissions, etc. This paper proposes a new integrated radioprint framework (IRID) that has two main components. First, we propose a machine learning-based radio identification solution that relies on hardware variabilities of internal components of the transmitter caused during manufacturing, allowing us to achieve passive device identification. Second, we introduce a new kind of covert channel, based on variations in the emitted signal strength, which allows us to implement unique active device identification. We evaluate our proposed framework on an experimental test-bed of 20 identical WiFi devices. Although our experiments deal only with IEEE 802.11b, the approach can easily be extended to any wireless protocol. The experimental results show that our proposed solution can differentiate between network devices with accuracy in excess of 99% on the basis of a standard-compliant implementation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2991649</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>80211 ; Authentication ; Communication system security ; covert channel ; Eavesdropping ; Electronic devices ; emerging technologies ; Hardware ; Interception ; Jamming ; Machine learning ; neural network ; Object recognition ; Physical unclonable function ; PUF ; Radioprint ; Signal strength ; Theft ; Uniqueness ; WiFi ; Wireless communication ; Wireless communications ; wireless security</subject><ispartof>IEEE access, 2020, Vol.8, p.83312-83320</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-9de004cae63d852ec882bd114e0d398194901d3a037ee761e983707287e6d9e03</cites><orcidid>0000-0002-7243-4778 ; 0000-0001-9574-0850 ; 0000-0003-1264-0112 ; 0000-0002-3553-987X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9082628$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Delgado, Oscar</creatorcontrib><creatorcontrib>Kechtban, Louai</creatorcontrib><creatorcontrib>Lugan, Sebastien</creatorcontrib><creatorcontrib>Macq, Benoit</creatorcontrib><title>Passive and Active Wireless Device Secure Identification</title><title>IEEE access</title><addtitle>Access</addtitle><description>Secure wireless device identification is necessary if we want to ensure that any transmitted data reach only a desired receiver. However the fact that wireless communications are by nature broadcast creates unique challenges such as identity theft, eavesdropping for data interception, jamming attacks to disrupt legitimate transmissions, etc. This paper proposes a new integrated radioprint framework (IRID) that has two main components. First, we propose a machine learning-based radio identification solution that relies on hardware variabilities of internal components of the transmitter caused during manufacturing, allowing us to achieve passive device identification. Second, we introduce a new kind of covert channel, based on variations in the emitted signal strength, which allows us to implement unique active device identification. We evaluate our proposed framework on an experimental test-bed of 20 identical WiFi devices. Although our experiments deal only with IEEE 802.11b, the approach can easily be extended to any wireless protocol. The experimental results show that our proposed solution can differentiate between network devices with accuracy in excess of 99% on the basis of a standard-compliant implementation.</description><subject>80211</subject><subject>Authentication</subject><subject>Communication system security</subject><subject>covert channel</subject><subject>Eavesdropping</subject><subject>Electronic devices</subject><subject>emerging technologies</subject><subject>Hardware</subject><subject>Interception</subject><subject>Jamming</subject><subject>Machine learning</subject><subject>neural network</subject><subject>Object recognition</subject><subject>Physical unclonable function</subject><subject>PUF</subject><subject>Radioprint</subject><subject>Signal strength</subject><subject>Theft</subject><subject>Uniqueness</subject><subject>WiFi</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>wireless security</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUF1LAzEQPETBUvsL-nLg89VNcvl6LLVqoaBQxceQS_Ykpd7V5Frw33v1irgvOwwzs8tk2ZTAjBDQd_PFYrnZzChQmFGtiSj1RTaiROiCcSYu_-HrbJLSFvpRPcXlKFMvNqVwxNw2Pp-77gTfQ8QdppTf4zE4zDfoDhHzlcemC3Vwtgttc5Nd1XaXcHLe4-ztYfm6eCrWz4-rxXxdOMZVV2iPAKWzKJhXnKJTilaekBLBM62ILjUQzywwiSgFQa2YBEmVROE1AhtnqyHXt3Zr9jF82vhtWhvML9HGD2NjF9wODUdWl0R4J0CWlecWWUVcXQlt0XrgfdbtkLWP7dcBU2e27SE2_fuGlrwETaUivYoNKhfblCLWf1cJmFPjZmjcnBo358Z713RwBUT8c2hQVFDFfgDHa3rX</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Delgado, Oscar</creator><creator>Kechtban, Louai</creator><creator>Lugan, Sebastien</creator><creator>Macq, Benoit</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7243-4778</orcidid><orcidid>https://orcid.org/0000-0001-9574-0850</orcidid><orcidid>https://orcid.org/0000-0003-1264-0112</orcidid><orcidid>https://orcid.org/0000-0002-3553-987X</orcidid></search><sort><creationdate>2020</creationdate><title>Passive and Active Wireless Device Secure Identification</title><author>Delgado, Oscar ; Kechtban, Louai ; Lugan, Sebastien ; Macq, Benoit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-9de004cae63d852ec882bd114e0d398194901d3a037ee761e983707287e6d9e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>80211</topic><topic>Authentication</topic><topic>Communication system security</topic><topic>covert channel</topic><topic>Eavesdropping</topic><topic>Electronic devices</topic><topic>emerging technologies</topic><topic>Hardware</topic><topic>Interception</topic><topic>Jamming</topic><topic>Machine learning</topic><topic>neural network</topic><topic>Object recognition</topic><topic>Physical unclonable function</topic><topic>PUF</topic><topic>Radioprint</topic><topic>Signal strength</topic><topic>Theft</topic><topic>Uniqueness</topic><topic>WiFi</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>wireless security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delgado, Oscar</creatorcontrib><creatorcontrib>Kechtban, Louai</creatorcontrib><creatorcontrib>Lugan, Sebastien</creatorcontrib><creatorcontrib>Macq, Benoit</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delgado, Oscar</au><au>Kechtban, Louai</au><au>Lugan, Sebastien</au><au>Macq, Benoit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passive and Active Wireless Device Secure Identification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>83312</spage><epage>83320</epage><pages>83312-83320</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Secure wireless device identification is necessary if we want to ensure that any transmitted data reach only a desired receiver. However the fact that wireless communications are by nature broadcast creates unique challenges such as identity theft, eavesdropping for data interception, jamming attacks to disrupt legitimate transmissions, etc. This paper proposes a new integrated radioprint framework (IRID) that has two main components. First, we propose a machine learning-based radio identification solution that relies on hardware variabilities of internal components of the transmitter caused during manufacturing, allowing us to achieve passive device identification. Second, we introduce a new kind of covert channel, based on variations in the emitted signal strength, which allows us to implement unique active device identification. We evaluate our proposed framework on an experimental test-bed of 20 identical WiFi devices. Although our experiments deal only with IEEE 802.11b, the approach can easily be extended to any wireless protocol. The experimental results show that our proposed solution can differentiate between network devices with accuracy in excess of 99% on the basis of a standard-compliant implementation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2991649</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7243-4778</orcidid><orcidid>https://orcid.org/0000-0001-9574-0850</orcidid><orcidid>https://orcid.org/0000-0003-1264-0112</orcidid><orcidid>https://orcid.org/0000-0002-3553-987X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.83312-83320 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_2991649 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals |
subjects | 80211 Authentication Communication system security covert channel Eavesdropping Electronic devices emerging technologies Hardware Interception Jamming Machine learning neural network Object recognition Physical unclonable function PUF Radioprint Signal strength Theft Uniqueness WiFi Wireless communication Wireless communications wireless security |
title | Passive and Active Wireless Device Secure Identification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passive%20and%20Active%20Wireless%20Device%20Secure%20Identification&rft.jtitle=IEEE%20access&rft.au=Delgado,%20Oscar&rft.date=2020&rft.volume=8&rft.spage=83312&rft.epage=83320&rft.pages=83312-83320&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2991649&rft_dat=%3Cproquest_cross%3E2454092781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454092781&rft_id=info:pmid/&rft_ieee_id=9082628&rft_doaj_id=oai_doaj_org_article_5e3f416dc6074bd5ae3b1cfb69aead05&rfr_iscdi=true |