Phase Difference-3D Coordinate Mapping Model of Structural Light Imaging System Based on Extreme Learning Machine Network

To meet the requirements of high accuracy and high efficiency in three-dimensional (3D) measurement, a phase difference-3D coordinate mapping model is proposed based on extreme learning machine (ELM) network. First, the reconstruction model of the ideal measurement system is set following the geomet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Lv, Shanshan, Jiang, Mingshun, Su, Chenhui, Zhang, Lei, Zhang, Faye, Sui, Qingmei, Jia, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 8
creator Lv, Shanshan
Jiang, Mingshun
Su, Chenhui
Zhang, Lei
Zhang, Faye
Sui, Qingmei
Jia, Lei
description To meet the requirements of high accuracy and high efficiency in three-dimensional (3D) measurement, a phase difference-3D coordinate mapping model is proposed based on extreme learning machine (ELM) network. First, the reconstruction model of the ideal measurement system is set following the geometric structure of the system. Subsequently, by generalizing camera and world coordinates, a generalized measurement model is built. Lastly, ELM network is employed to solve the mapping coefficients. During measurement, only one phase difference map is required to complete the 3D reconstruction of the object, which simplifies the data processing process and saves time. The result indicates that the mean square errors (MSEs) of the X, Y and Z of the testing sample are 3.5955×10-4 mm, 9.5113×10-4 mm and 4.4×10-3 mm, respectively. Moreover, the reconstruction experiments of objects with different geometric structures are performed to demonstrate the general application of the proposed method.
doi_str_mv 10.1109/ACCESS.2020.2986225
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2986225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9058670</ieee_id><doaj_id>oai_doaj_org_article_ab12adaf1f9040c18b77d1f3ebd78e7c</doaj_id><sourcerecordid>2453703577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8cd2c33975d795c40aec638e14a31948bcea3f7e7d3c1adada95b194119922183</originalsourceid><addsrcrecordid>eNpNkc1uGyEUhUdRKyVK8wTZIGU9Lj_DAMt04raWnLSSmzVi4GLj2oPLYLV---JMFAUWXB3O-UA6VXVL8IwQrD7fd918tZpRTPGMKtlSyi-qK0paVTPO2g_v5svqZhy3uCxZJC6uqtPPjRkBPQTvIcFgoWYPqIsxuTCYDOjRHA5hWKPH6GCHokernI42H5PZoWVYbzJa7M367Fidxgx79KXgHIoDmv_LCfaAlmDS8IIwdhMGQE-Q_8b0-1P10ZvdCDev53X1_HX-q_teL398W3T3y9o2WOZaWkctY0pwJxQvmgHbMgmkMYyoRvYWDPMChGOWGFe24n25IEQpSolk19Vi4rpotvqQwt6kk44m6BchprU2KQe7A216QgvAE69wgy2RvRCOeAa9ExKELay7iXVI8c8Rxqy38ZiG8n1NG84EZlyI4mKTy6Y4jgn826sE63NleqpMnyvTr5WV1O2UCgDwllCYy7Zw_wNTNJK3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453703577</pqid></control><display><type>article</type><title>Phase Difference-3D Coordinate Mapping Model of Structural Light Imaging System Based on Extreme Learning Machine Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lv, Shanshan ; Jiang, Mingshun ; Su, Chenhui ; Zhang, Lei ; Zhang, Faye ; Sui, Qingmei ; Jia, Lei</creator><creatorcontrib>Lv, Shanshan ; Jiang, Mingshun ; Su, Chenhui ; Zhang, Lei ; Zhang, Faye ; Sui, Qingmei ; Jia, Lei</creatorcontrib><description>To meet the requirements of high accuracy and high efficiency in three-dimensional (3D) measurement, a phase difference-3D coordinate mapping model is proposed based on extreme learning machine (ELM) network. First, the reconstruction model of the ideal measurement system is set following the geometric structure of the system. Subsequently, by generalizing camera and world coordinates, a generalized measurement model is built. Lastly, ELM network is employed to solve the mapping coefficients. During measurement, only one phase difference map is required to complete the 3D reconstruction of the object, which simplifies the data processing process and saves time. The result indicates that the mean square errors (MSEs) of the X, Y and Z of the testing sample are 3.5955×10-4 mm, 9.5113×10-4 mm and 4.4×10-3 mm, respectively. Moreover, the reconstruction experiments of objects with different geometric structures are performed to demonstrate the general application of the proposed method.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2986225</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D reconstruction ; Artificial neural networks ; Calibration ; Cameras ; Coordinate measuring machines ; Data processing ; ELM network ; Image reconstruction ; Machine learning ; Mapping ; Neurons ; Phase difference ; Phase measurement ; Phase shift ; structural light ; Three dimensional models ; Three-dimensional displays</subject><ispartof>IEEE access, 2020-01, Vol.8, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8cd2c33975d795c40aec638e14a31948bcea3f7e7d3c1adada95b194119922183</citedby><cites>FETCH-LOGICAL-c408t-8cd2c33975d795c40aec638e14a31948bcea3f7e7d3c1adada95b194119922183</cites><orcidid>0000-0002-7045-3967 ; 0000-0003-0781-0412 ; 0000-0002-0031-7409 ; 0000-0002-5480-6814 ; 0000-0002-7229-7443 ; 0000-0001-6239-3231 ; 0000-0001-7732-153X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9058670$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Lv, Shanshan</creatorcontrib><creatorcontrib>Jiang, Mingshun</creatorcontrib><creatorcontrib>Su, Chenhui</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhang, Faye</creatorcontrib><creatorcontrib>Sui, Qingmei</creatorcontrib><creatorcontrib>Jia, Lei</creatorcontrib><title>Phase Difference-3D Coordinate Mapping Model of Structural Light Imaging System Based on Extreme Learning Machine Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>To meet the requirements of high accuracy and high efficiency in three-dimensional (3D) measurement, a phase difference-3D coordinate mapping model is proposed based on extreme learning machine (ELM) network. First, the reconstruction model of the ideal measurement system is set following the geometric structure of the system. Subsequently, by generalizing camera and world coordinates, a generalized measurement model is built. Lastly, ELM network is employed to solve the mapping coefficients. During measurement, only one phase difference map is required to complete the 3D reconstruction of the object, which simplifies the data processing process and saves time. The result indicates that the mean square errors (MSEs) of the X, Y and Z of the testing sample are 3.5955×10-4 mm, 9.5113×10-4 mm and 4.4×10-3 mm, respectively. Moreover, the reconstruction experiments of objects with different geometric structures are performed to demonstrate the general application of the proposed method.</description><subject>3D reconstruction</subject><subject>Artificial neural networks</subject><subject>Calibration</subject><subject>Cameras</subject><subject>Coordinate measuring machines</subject><subject>Data processing</subject><subject>ELM network</subject><subject>Image reconstruction</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Neurons</subject><subject>Phase difference</subject><subject>Phase measurement</subject><subject>Phase shift</subject><subject>structural light</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1uGyEUhUdRKyVK8wTZIGU9Lj_DAMt04raWnLSSmzVi4GLj2oPLYLV---JMFAUWXB3O-UA6VXVL8IwQrD7fd918tZpRTPGMKtlSyi-qK0paVTPO2g_v5svqZhy3uCxZJC6uqtPPjRkBPQTvIcFgoWYPqIsxuTCYDOjRHA5hWKPH6GCHokernI42H5PZoWVYbzJa7M367Fidxgx79KXgHIoDmv_LCfaAlmDS8IIwdhMGQE-Q_8b0-1P10ZvdCDev53X1_HX-q_teL398W3T3y9o2WOZaWkctY0pwJxQvmgHbMgmkMYyoRvYWDPMChGOWGFe24n25IEQpSolk19Vi4rpotvqQwt6kk44m6BchprU2KQe7A216QgvAE69wgy2RvRCOeAa9ExKELay7iXVI8c8Rxqy38ZiG8n1NG84EZlyI4mKTy6Y4jgn826sE63NleqpMnyvTr5WV1O2UCgDwllCYy7Zw_wNTNJK3</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Lv, Shanshan</creator><creator>Jiang, Mingshun</creator><creator>Su, Chenhui</creator><creator>Zhang, Lei</creator><creator>Zhang, Faye</creator><creator>Sui, Qingmei</creator><creator>Jia, Lei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7045-3967</orcidid><orcidid>https://orcid.org/0000-0003-0781-0412</orcidid><orcidid>https://orcid.org/0000-0002-0031-7409</orcidid><orcidid>https://orcid.org/0000-0002-5480-6814</orcidid><orcidid>https://orcid.org/0000-0002-7229-7443</orcidid><orcidid>https://orcid.org/0000-0001-6239-3231</orcidid><orcidid>https://orcid.org/0000-0001-7732-153X</orcidid></search><sort><creationdate>20200101</creationdate><title>Phase Difference-3D Coordinate Mapping Model of Structural Light Imaging System Based on Extreme Learning Machine Network</title><author>Lv, Shanshan ; Jiang, Mingshun ; Su, Chenhui ; Zhang, Lei ; Zhang, Faye ; Sui, Qingmei ; Jia, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8cd2c33975d795c40aec638e14a31948bcea3f7e7d3c1adada95b194119922183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D reconstruction</topic><topic>Artificial neural networks</topic><topic>Calibration</topic><topic>Cameras</topic><topic>Coordinate measuring machines</topic><topic>Data processing</topic><topic>ELM network</topic><topic>Image reconstruction</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Neurons</topic><topic>Phase difference</topic><topic>Phase measurement</topic><topic>Phase shift</topic><topic>structural light</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Shanshan</creatorcontrib><creatorcontrib>Jiang, Mingshun</creatorcontrib><creatorcontrib>Su, Chenhui</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Zhang, Faye</creatorcontrib><creatorcontrib>Sui, Qingmei</creatorcontrib><creatorcontrib>Jia, Lei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Shanshan</au><au>Jiang, Mingshun</au><au>Su, Chenhui</au><au>Zhang, Lei</au><au>Zhang, Faye</au><au>Sui, Qingmei</au><au>Jia, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Difference-3D Coordinate Mapping Model of Structural Light Imaging System Based on Extreme Learning Machine Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To meet the requirements of high accuracy and high efficiency in three-dimensional (3D) measurement, a phase difference-3D coordinate mapping model is proposed based on extreme learning machine (ELM) network. First, the reconstruction model of the ideal measurement system is set following the geometric structure of the system. Subsequently, by generalizing camera and world coordinates, a generalized measurement model is built. Lastly, ELM network is employed to solve the mapping coefficients. During measurement, only one phase difference map is required to complete the 3D reconstruction of the object, which simplifies the data processing process and saves time. The result indicates that the mean square errors (MSEs) of the X, Y and Z of the testing sample are 3.5955×10-4 mm, 9.5113×10-4 mm and 4.4×10-3 mm, respectively. Moreover, the reconstruction experiments of objects with different geometric structures are performed to demonstrate the general application of the proposed method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2986225</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7045-3967</orcidid><orcidid>https://orcid.org/0000-0003-0781-0412</orcidid><orcidid>https://orcid.org/0000-0002-0031-7409</orcidid><orcidid>https://orcid.org/0000-0002-5480-6814</orcidid><orcidid>https://orcid.org/0000-0002-7229-7443</orcidid><orcidid>https://orcid.org/0000-0001-6239-3231</orcidid><orcidid>https://orcid.org/0000-0001-7732-153X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020-01, Vol.8, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_2986225
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects 3D reconstruction
Artificial neural networks
Calibration
Cameras
Coordinate measuring machines
Data processing
ELM network
Image reconstruction
Machine learning
Mapping
Neurons
Phase difference
Phase measurement
Phase shift
structural light
Three dimensional models
Three-dimensional displays
title Phase Difference-3D Coordinate Mapping Model of Structural Light Imaging System Based on Extreme Learning Machine Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A00%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Difference-3D%20Coordinate%20Mapping%20Model%20of%20Structural%20Light%20Imaging%20System%20Based%20on%20Extreme%20Learning%20Machine%20Network&rft.jtitle=IEEE%20access&rft.au=Lv,%20Shanshan&rft.date=2020-01-01&rft.volume=8&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2986225&rft_dat=%3Cproquest_cross%3E2453703577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453703577&rft_id=info:pmid/&rft_ieee_id=9058670&rft_doaj_id=oai_doaj_org_article_ab12adaf1f9040c18b77d1f3ebd78e7c&rfr_iscdi=true