Deep Convolutional and LSTM Recurrent Neural Networks for Rolling Bearing Fault Diagnosis Under Strong Noises and Variable Loads

To research the problems of the rolling bearing fault diagnosis under different noises and loads, a dual-input model based on a convolutional neural network (CNN) and long-short term memory (LSTM) neural network is proposed. The model uses both time domain and frequency domain features to achieve en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.66257-66269
Hauptverfasser: Qiao, Meiying, Yan, Shuhao, Tang, Xiaxia, Xu, Chengkuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!