Deep Convolutional and LSTM Recurrent Neural Networks for Rolling Bearing Fault Diagnosis Under Strong Noises and Variable Loads
To research the problems of the rolling bearing fault diagnosis under different noises and loads, a dual-input model based on a convolutional neural network (CNN) and long-short term memory (LSTM) neural network is proposed. The model uses both time domain and frequency domain features to achieve en...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.66257-66269 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!