Vector Decomposed Long Short-Term Memory Model for Behavioral Modeling and Digital Predistortion for Wideband RF Power Amplifiers

This paper proposes two novel vector decomposed neural network models for behavioral modeling and digital predistortion (DPD) of radio-frequency (RF) power amplifiers (PAs): vector decomposed long short-term memory (VDLSTM) model and simplified vector decomposed long short-term memory (SVDLSTM) mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.63780-63789
Hauptverfasser: Li, Hongmin, Zhang, Yikang, Li, Gang, Liu, Falin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63789
container_issue
container_start_page 63780
container_title IEEE access
container_volume 8
creator Li, Hongmin
Zhang, Yikang
Li, Gang
Liu, Falin
description This paper proposes two novel vector decomposed neural network models for behavioral modeling and digital predistortion (DPD) of radio-frequency (RF) power amplifiers (PAs): vector decomposed long short-term memory (VDLSTM) model and simplified vector decomposed long short-term memory (SVDLSTM) model. The proposed VDLSTM model is a variant of the classic long short-term memory (LSTM) model that can model long-term memory effects. To comply with the physical mechanism of RF PAs, VDLSTM model only conducts nonlinear operations on the magnitudes of the input signals, while the phase information is recovered by linear weighting operations on the output of the LSTM cell. Furthermore, this study modifies the LSTM cell by adding phase recovery operations inside the cell and replacing the original hidden state with the output magnitudes that are recovered with phase information. With the modified LSTM cell, a low-complexity SVDLSTM model is proposed. The experiment results show that the proposed VDLSTM model can achieve better linearization performance compared with the state-of-the-art models when linearizing PAs with wideband inputs. Besides, in wideband scenarios, SVDLSTM model with much fewer parameters can present comparable linearzation performance compared to VDLSTM model.
doi_str_mv 10.1109/ACCESS.2020.2984682
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2984682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9051831</ieee_id><doaj_id>oai_doaj_org_article_16763e375edc4a9f8d81cf2b82a7d12f</doaj_id><sourcerecordid>2453699320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1cbc49c9364ff4a0def26b2690598c3f1dde002076408c942676ee9e0f8f965b3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSNEJarSX9BNJJYogx952MshbaHSVFRMgaXl2NdTj5J4sDOtuuSfc6epSpd4Y-voO9dX52TZGSULSon8tGzbi_V6wQgjCyZFWQv2JjtmtJYFr3j99tX7XXaa0pbgEShVzXH25yeYKcT8HEwYdiGBzVdh3OTruxCn4hbikF_DEOJjfh0s9LlD9jPc6Xsfou5n0SOvR5uf-42fULyJYH3CqZMP45Pjl7fQHZDvl_lNeICYL4dd752HmN5nR073CU6f75Psx-XFbfu1WH37ctUuV4UpiZgKajpTSiN5XTpXamLBsbpjtSSVFIY7ai0QjKCpETeyZHVTA0ggTjhZVx0_ya7muTbordpFP-j4qIL26kkIcaM0bmx6UBS9HHhTgTWllk5YQY1jnWC6sZQ5nPVhnrWL4fce0qS2YR9HXF-xEnOWkjOCFJ8pE0NKEdzLr5SoQ3Vqrk4dqlPP1aFLzK4H6IJLxsNo4MWJ1VWcCM4YvmTTYuCHlNuwHye0fvx_K9JnM-0B_lGYJxWc8r-PGbYo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453699320</pqid></control><display><type>article</type><title>Vector Decomposed Long Short-Term Memory Model for Behavioral Modeling and Digital Predistortion for Wideband RF Power Amplifiers</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Hongmin ; Zhang, Yikang ; Li, Gang ; Liu, Falin</creator><creatorcontrib>Li, Hongmin ; Zhang, Yikang ; Li, Gang ; Liu, Falin</creatorcontrib><description>This paper proposes two novel vector decomposed neural network models for behavioral modeling and digital predistortion (DPD) of radio-frequency (RF) power amplifiers (PAs): vector decomposed long short-term memory (VDLSTM) model and simplified vector decomposed long short-term memory (SVDLSTM) model. The proposed VDLSTM model is a variant of the classic long short-term memory (LSTM) model that can model long-term memory effects. To comply with the physical mechanism of RF PAs, VDLSTM model only conducts nonlinear operations on the magnitudes of the input signals, while the phase information is recovered by linear weighting operations on the output of the LSTM cell. Furthermore, this study modifies the LSTM cell by adding phase recovery operations inside the cell and replacing the original hidden state with the output magnitudes that are recovered with phase information. With the modified LSTM cell, a low-complexity SVDLSTM model is proposed. The experiment results show that the proposed VDLSTM model can achieve better linearization performance compared with the state-of-the-art models when linearizing PAs with wideband inputs. Besides, in wideband scenarios, SVDLSTM model with much fewer parameters can present comparable linearzation performance compared to VDLSTM model.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2984682</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>behavioral modeling ; Broadband ; Computer architecture ; Computer Science ; Computer Science, Information Systems ; Data models ; Decomposition ; digital predistortion ; Engineering ; Engineering, Electrical &amp; Electronic ; long short-term memory ; Microprocessors ; Modelling ; neural network ; Neural networks ; Nonlinear power amplifier ; Power amplifiers ; Radio frequency ; Science &amp; Technology ; Short term ; Solid modeling ; Technology ; Telecommunications ; vector decomposed ; Wideband</subject><ispartof>IEEE access, 2020, Vol.8, p.63780-63789</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>25</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000530832200097</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-1cbc49c9364ff4a0def26b2690598c3f1dde002076408c942676ee9e0f8f965b3</citedby><cites>FETCH-LOGICAL-c408t-1cbc49c9364ff4a0def26b2690598c3f1dde002076408c942676ee9e0f8f965b3</cites><orcidid>0000-0003-0413-4121 ; 0000-0002-4505-5537 ; 0000-0002-6508-0027 ; 0000-0001-6815-7133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9051831$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27637,27927,27928,27929,54937</link.rule.ids></links><search><creatorcontrib>Li, Hongmin</creatorcontrib><creatorcontrib>Zhang, Yikang</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Liu, Falin</creatorcontrib><title>Vector Decomposed Long Short-Term Memory Model for Behavioral Modeling and Digital Predistortion for Wideband RF Power Amplifiers</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>This paper proposes two novel vector decomposed neural network models for behavioral modeling and digital predistortion (DPD) of radio-frequency (RF) power amplifiers (PAs): vector decomposed long short-term memory (VDLSTM) model and simplified vector decomposed long short-term memory (SVDLSTM) model. The proposed VDLSTM model is a variant of the classic long short-term memory (LSTM) model that can model long-term memory effects. To comply with the physical mechanism of RF PAs, VDLSTM model only conducts nonlinear operations on the magnitudes of the input signals, while the phase information is recovered by linear weighting operations on the output of the LSTM cell. Furthermore, this study modifies the LSTM cell by adding phase recovery operations inside the cell and replacing the original hidden state with the output magnitudes that are recovered with phase information. With the modified LSTM cell, a low-complexity SVDLSTM model is proposed. The experiment results show that the proposed VDLSTM model can achieve better linearization performance compared with the state-of-the-art models when linearizing PAs with wideband inputs. Besides, in wideband scenarios, SVDLSTM model with much fewer parameters can present comparable linearzation performance compared to VDLSTM model.</description><subject>behavioral modeling</subject><subject>Broadband</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Data models</subject><subject>Decomposition</subject><subject>digital predistortion</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>long short-term memory</subject><subject>Microprocessors</subject><subject>Modelling</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Nonlinear power amplifier</subject><subject>Power amplifiers</subject><subject>Radio frequency</subject><subject>Science &amp; Technology</subject><subject>Short term</subject><subject>Solid modeling</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>vector decomposed</subject><subject>Wideband</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUtv1DAUhSNEJarSX9BNJJYogx952MshbaHSVFRMgaXl2NdTj5J4sDOtuuSfc6epSpd4Y-voO9dX52TZGSULSon8tGzbi_V6wQgjCyZFWQv2JjtmtJYFr3j99tX7XXaa0pbgEShVzXH25yeYKcT8HEwYdiGBzVdh3OTruxCn4hbikF_DEOJjfh0s9LlD9jPc6Xsfou5n0SOvR5uf-42fULyJYH3CqZMP45Pjl7fQHZDvl_lNeICYL4dd752HmN5nR073CU6f75Psx-XFbfu1WH37ctUuV4UpiZgKajpTSiN5XTpXamLBsbpjtSSVFIY7ai0QjKCpETeyZHVTA0ggTjhZVx0_ya7muTbordpFP-j4qIL26kkIcaM0bmx6UBS9HHhTgTWllk5YQY1jnWC6sZQ5nPVhnrWL4fce0qS2YR9HXF-xEnOWkjOCFJ8pE0NKEdzLr5SoQ3Vqrk4dqlPP1aFLzK4H6IJLxsNo4MWJ1VWcCM4YvmTTYuCHlNuwHye0fvx_K9JnM-0B_lGYJxWc8r-PGbYo</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Hongmin</creator><creator>Zhang, Yikang</creator><creator>Li, Gang</creator><creator>Liu, Falin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0413-4121</orcidid><orcidid>https://orcid.org/0000-0002-4505-5537</orcidid><orcidid>https://orcid.org/0000-0002-6508-0027</orcidid><orcidid>https://orcid.org/0000-0001-6815-7133</orcidid></search><sort><creationdate>2020</creationdate><title>Vector Decomposed Long Short-Term Memory Model for Behavioral Modeling and Digital Predistortion for Wideband RF Power Amplifiers</title><author>Li, Hongmin ; Zhang, Yikang ; Li, Gang ; Liu, Falin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1cbc49c9364ff4a0def26b2690598c3f1dde002076408c942676ee9e0f8f965b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>behavioral modeling</topic><topic>Broadband</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Data models</topic><topic>Decomposition</topic><topic>digital predistortion</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>long short-term memory</topic><topic>Microprocessors</topic><topic>Modelling</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Nonlinear power amplifier</topic><topic>Power amplifiers</topic><topic>Radio frequency</topic><topic>Science &amp; Technology</topic><topic>Short term</topic><topic>Solid modeling</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>vector decomposed</topic><topic>Wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongmin</creatorcontrib><creatorcontrib>Zhang, Yikang</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Liu, Falin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongmin</au><au>Zhang, Yikang</au><au>Li, Gang</au><au>Liu, Falin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vector Decomposed Long Short-Term Memory Model for Behavioral Modeling and Digital Predistortion for Wideband RF Power Amplifiers</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>63780</spage><epage>63789</epage><pages>63780-63789</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes two novel vector decomposed neural network models for behavioral modeling and digital predistortion (DPD) of radio-frequency (RF) power amplifiers (PAs): vector decomposed long short-term memory (VDLSTM) model and simplified vector decomposed long short-term memory (SVDLSTM) model. The proposed VDLSTM model is a variant of the classic long short-term memory (LSTM) model that can model long-term memory effects. To comply with the physical mechanism of RF PAs, VDLSTM model only conducts nonlinear operations on the magnitudes of the input signals, while the phase information is recovered by linear weighting operations on the output of the LSTM cell. Furthermore, this study modifies the LSTM cell by adding phase recovery operations inside the cell and replacing the original hidden state with the output magnitudes that are recovered with phase information. With the modified LSTM cell, a low-complexity SVDLSTM model is proposed. The experiment results show that the proposed VDLSTM model can achieve better linearization performance compared with the state-of-the-art models when linearizing PAs with wideband inputs. Besides, in wideband scenarios, SVDLSTM model with much fewer parameters can present comparable linearzation performance compared to VDLSTM model.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2984682</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0413-4121</orcidid><orcidid>https://orcid.org/0000-0002-4505-5537</orcidid><orcidid>https://orcid.org/0000-0002-6508-0027</orcidid><orcidid>https://orcid.org/0000-0001-6815-7133</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.63780-63789
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_2984682
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects behavioral modeling
Broadband
Computer architecture
Computer Science
Computer Science, Information Systems
Data models
Decomposition
digital predistortion
Engineering
Engineering, Electrical & Electronic
long short-term memory
Microprocessors
Modelling
neural network
Neural networks
Nonlinear power amplifier
Power amplifiers
Radio frequency
Science & Technology
Short term
Solid modeling
Technology
Telecommunications
vector decomposed
Wideband
title Vector Decomposed Long Short-Term Memory Model for Behavioral Modeling and Digital Predistortion for Wideband RF Power Amplifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vector%20Decomposed%20Long%20Short-Term%20Memory%20Model%20for%20Behavioral%20Modeling%20and%20Digital%20Predistortion%20for%20Wideband%20RF%20Power%20Amplifiers&rft.jtitle=IEEE%20access&rft.au=Li,%20Hongmin&rft.date=2020&rft.volume=8&rft.spage=63780&rft.epage=63789&rft.pages=63780-63789&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2984682&rft_dat=%3Cproquest_cross%3E2453699320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453699320&rft_id=info:pmid/&rft_ieee_id=9051831&rft_doaj_id=oai_doaj_org_article_16763e375edc4a9f8d81cf2b82a7d12f&rfr_iscdi=true