Vector Decomposed Long Short-Term Memory Model for Behavioral Modeling and Digital Predistortion for Wideband RF Power Amplifiers
This paper proposes two novel vector decomposed neural network models for behavioral modeling and digital predistortion (DPD) of radio-frequency (RF) power amplifiers (PAs): vector decomposed long short-term memory (VDLSTM) model and simplified vector decomposed long short-term memory (SVDLSTM) mode...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.63780-63789 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63789 |
---|---|
container_issue | |
container_start_page | 63780 |
container_title | IEEE access |
container_volume | 8 |
creator | Li, Hongmin Zhang, Yikang Li, Gang Liu, Falin |
description | This paper proposes two novel vector decomposed neural network models for behavioral modeling and digital predistortion (DPD) of radio-frequency (RF) power amplifiers (PAs): vector decomposed long short-term memory (VDLSTM) model and simplified vector decomposed long short-term memory (SVDLSTM) model. The proposed VDLSTM model is a variant of the classic long short-term memory (LSTM) model that can model long-term memory effects. To comply with the physical mechanism of RF PAs, VDLSTM model only conducts nonlinear operations on the magnitudes of the input signals, while the phase information is recovered by linear weighting operations on the output of the LSTM cell. Furthermore, this study modifies the LSTM cell by adding phase recovery operations inside the cell and replacing the original hidden state with the output magnitudes that are recovered with phase information. With the modified LSTM cell, a low-complexity SVDLSTM model is proposed. The experiment results show that the proposed VDLSTM model can achieve better linearization performance compared with the state-of-the-art models when linearizing PAs with wideband inputs. Besides, in wideband scenarios, SVDLSTM model with much fewer parameters can present comparable linearzation performance compared to VDLSTM model. |
doi_str_mv | 10.1109/ACCESS.2020.2984682 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2984682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9051831</ieee_id><doaj_id>oai_doaj_org_article_16763e375edc4a9f8d81cf2b82a7d12f</doaj_id><sourcerecordid>2453699320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1cbc49c9364ff4a0def26b2690598c3f1dde002076408c942676ee9e0f8f965b3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSNEJarSX9BNJJYogx952MshbaHSVFRMgaXl2NdTj5J4sDOtuuSfc6epSpd4Y-voO9dX52TZGSULSon8tGzbi_V6wQgjCyZFWQv2JjtmtJYFr3j99tX7XXaa0pbgEShVzXH25yeYKcT8HEwYdiGBzVdh3OTruxCn4hbikF_DEOJjfh0s9LlD9jPc6Xsfou5n0SOvR5uf-42fULyJYH3CqZMP45Pjl7fQHZDvl_lNeICYL4dd752HmN5nR073CU6f75Psx-XFbfu1WH37ctUuV4UpiZgKajpTSiN5XTpXamLBsbpjtSSVFIY7ai0QjKCpETeyZHVTA0ggTjhZVx0_ya7muTbordpFP-j4qIL26kkIcaM0bmx6UBS9HHhTgTWllk5YQY1jnWC6sZQ5nPVhnrWL4fce0qS2YR9HXF-xEnOWkjOCFJ8pE0NKEdzLr5SoQ3Vqrk4dqlPP1aFLzK4H6IJLxsNo4MWJ1VWcCM4YvmTTYuCHlNuwHye0fvx_K9JnM-0B_lGYJxWc8r-PGbYo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453699320</pqid></control><display><type>article</type><title>Vector Decomposed Long Short-Term Memory Model for Behavioral Modeling and Digital Predistortion for Wideband RF Power Amplifiers</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Hongmin ; Zhang, Yikang ; Li, Gang ; Liu, Falin</creator><creatorcontrib>Li, Hongmin ; Zhang, Yikang ; Li, Gang ; Liu, Falin</creatorcontrib><description>This paper proposes two novel vector decomposed neural network models for behavioral modeling and digital predistortion (DPD) of radio-frequency (RF) power amplifiers (PAs): vector decomposed long short-term memory (VDLSTM) model and simplified vector decomposed long short-term memory (SVDLSTM) model. The proposed VDLSTM model is a variant of the classic long short-term memory (LSTM) model that can model long-term memory effects. To comply with the physical mechanism of RF PAs, VDLSTM model only conducts nonlinear operations on the magnitudes of the input signals, while the phase information is recovered by linear weighting operations on the output of the LSTM cell. Furthermore, this study modifies the LSTM cell by adding phase recovery operations inside the cell and replacing the original hidden state with the output magnitudes that are recovered with phase information. With the modified LSTM cell, a low-complexity SVDLSTM model is proposed. The experiment results show that the proposed VDLSTM model can achieve better linearization performance compared with the state-of-the-art models when linearizing PAs with wideband inputs. Besides, in wideband scenarios, SVDLSTM model with much fewer parameters can present comparable linearzation performance compared to VDLSTM model.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2984682</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>behavioral modeling ; Broadband ; Computer architecture ; Computer Science ; Computer Science, Information Systems ; Data models ; Decomposition ; digital predistortion ; Engineering ; Engineering, Electrical & Electronic ; long short-term memory ; Microprocessors ; Modelling ; neural network ; Neural networks ; Nonlinear power amplifier ; Power amplifiers ; Radio frequency ; Science & Technology ; Short term ; Solid modeling ; Technology ; Telecommunications ; vector decomposed ; Wideband</subject><ispartof>IEEE access, 2020, Vol.8, p.63780-63789</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>25</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000530832200097</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-1cbc49c9364ff4a0def26b2690598c3f1dde002076408c942676ee9e0f8f965b3</citedby><cites>FETCH-LOGICAL-c408t-1cbc49c9364ff4a0def26b2690598c3f1dde002076408c942676ee9e0f8f965b3</cites><orcidid>0000-0003-0413-4121 ; 0000-0002-4505-5537 ; 0000-0002-6508-0027 ; 0000-0001-6815-7133</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9051831$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27637,27927,27928,27929,54937</link.rule.ids></links><search><creatorcontrib>Li, Hongmin</creatorcontrib><creatorcontrib>Zhang, Yikang</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Liu, Falin</creatorcontrib><title>Vector Decomposed Long Short-Term Memory Model for Behavioral Modeling and Digital Predistortion for Wideband RF Power Amplifiers</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>This paper proposes two novel vector decomposed neural network models for behavioral modeling and digital predistortion (DPD) of radio-frequency (RF) power amplifiers (PAs): vector decomposed long short-term memory (VDLSTM) model and simplified vector decomposed long short-term memory (SVDLSTM) model. The proposed VDLSTM model is a variant of the classic long short-term memory (LSTM) model that can model long-term memory effects. To comply with the physical mechanism of RF PAs, VDLSTM model only conducts nonlinear operations on the magnitudes of the input signals, while the phase information is recovered by linear weighting operations on the output of the LSTM cell. Furthermore, this study modifies the LSTM cell by adding phase recovery operations inside the cell and replacing the original hidden state with the output magnitudes that are recovered with phase information. With the modified LSTM cell, a low-complexity SVDLSTM model is proposed. The experiment results show that the proposed VDLSTM model can achieve better linearization performance compared with the state-of-the-art models when linearizing PAs with wideband inputs. Besides, in wideband scenarios, SVDLSTM model with much fewer parameters can present comparable linearzation performance compared to VDLSTM model.</description><subject>behavioral modeling</subject><subject>Broadband</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Data models</subject><subject>Decomposition</subject><subject>digital predistortion</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>long short-term memory</subject><subject>Microprocessors</subject><subject>Modelling</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Nonlinear power amplifier</subject><subject>Power amplifiers</subject><subject>Radio frequency</subject><subject>Science & Technology</subject><subject>Short term</subject><subject>Solid modeling</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>vector decomposed</subject><subject>Wideband</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUtv1DAUhSNEJarSX9BNJJYogx952MshbaHSVFRMgaXl2NdTj5J4sDOtuuSfc6epSpd4Y-voO9dX52TZGSULSon8tGzbi_V6wQgjCyZFWQv2JjtmtJYFr3j99tX7XXaa0pbgEShVzXH25yeYKcT8HEwYdiGBzVdh3OTruxCn4hbikF_DEOJjfh0s9LlD9jPc6Xsfou5n0SOvR5uf-42fULyJYH3CqZMP45Pjl7fQHZDvl_lNeICYL4dd752HmN5nR073CU6f75Psx-XFbfu1WH37ctUuV4UpiZgKajpTSiN5XTpXamLBsbpjtSSVFIY7ai0QjKCpETeyZHVTA0ggTjhZVx0_ya7muTbordpFP-j4qIL26kkIcaM0bmx6UBS9HHhTgTWllk5YQY1jnWC6sZQ5nPVhnrWL4fce0qS2YR9HXF-xEnOWkjOCFJ8pE0NKEdzLr5SoQ3Vqrk4dqlPP1aFLzK4H6IJLxsNo4MWJ1VWcCM4YvmTTYuCHlNuwHye0fvx_K9JnM-0B_lGYJxWc8r-PGbYo</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Li, Hongmin</creator><creator>Zhang, Yikang</creator><creator>Li, Gang</creator><creator>Liu, Falin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0413-4121</orcidid><orcidid>https://orcid.org/0000-0002-4505-5537</orcidid><orcidid>https://orcid.org/0000-0002-6508-0027</orcidid><orcidid>https://orcid.org/0000-0001-6815-7133</orcidid></search><sort><creationdate>2020</creationdate><title>Vector Decomposed Long Short-Term Memory Model for Behavioral Modeling and Digital Predistortion for Wideband RF Power Amplifiers</title><author>Li, Hongmin ; Zhang, Yikang ; Li, Gang ; Liu, Falin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1cbc49c9364ff4a0def26b2690598c3f1dde002076408c942676ee9e0f8f965b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>behavioral modeling</topic><topic>Broadband</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Data models</topic><topic>Decomposition</topic><topic>digital predistortion</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>long short-term memory</topic><topic>Microprocessors</topic><topic>Modelling</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Nonlinear power amplifier</topic><topic>Power amplifiers</topic><topic>Radio frequency</topic><topic>Science & Technology</topic><topic>Short term</topic><topic>Solid modeling</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>vector decomposed</topic><topic>Wideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hongmin</creatorcontrib><creatorcontrib>Zhang, Yikang</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Liu, Falin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hongmin</au><au>Zhang, Yikang</au><au>Li, Gang</au><au>Liu, Falin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vector Decomposed Long Short-Term Memory Model for Behavioral Modeling and Digital Predistortion for Wideband RF Power Amplifiers</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>63780</spage><epage>63789</epage><pages>63780-63789</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes two novel vector decomposed neural network models for behavioral modeling and digital predistortion (DPD) of radio-frequency (RF) power amplifiers (PAs): vector decomposed long short-term memory (VDLSTM) model and simplified vector decomposed long short-term memory (SVDLSTM) model. The proposed VDLSTM model is a variant of the classic long short-term memory (LSTM) model that can model long-term memory effects. To comply with the physical mechanism of RF PAs, VDLSTM model only conducts nonlinear operations on the magnitudes of the input signals, while the phase information is recovered by linear weighting operations on the output of the LSTM cell. Furthermore, this study modifies the LSTM cell by adding phase recovery operations inside the cell and replacing the original hidden state with the output magnitudes that are recovered with phase information. With the modified LSTM cell, a low-complexity SVDLSTM model is proposed. The experiment results show that the proposed VDLSTM model can achieve better linearization performance compared with the state-of-the-art models when linearizing PAs with wideband inputs. Besides, in wideband scenarios, SVDLSTM model with much fewer parameters can present comparable linearzation performance compared to VDLSTM model.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2984682</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0413-4121</orcidid><orcidid>https://orcid.org/0000-0002-4505-5537</orcidid><orcidid>https://orcid.org/0000-0002-6508-0027</orcidid><orcidid>https://orcid.org/0000-0001-6815-7133</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.63780-63789 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_2984682 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | behavioral modeling Broadband Computer architecture Computer Science Computer Science, Information Systems Data models Decomposition digital predistortion Engineering Engineering, Electrical & Electronic long short-term memory Microprocessors Modelling neural network Neural networks Nonlinear power amplifier Power amplifiers Radio frequency Science & Technology Short term Solid modeling Technology Telecommunications vector decomposed Wideband |
title | Vector Decomposed Long Short-Term Memory Model for Behavioral Modeling and Digital Predistortion for Wideband RF Power Amplifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vector%20Decomposed%20Long%20Short-Term%20Memory%20Model%20for%20Behavioral%20Modeling%20and%20Digital%20Predistortion%20for%20Wideband%20RF%20Power%20Amplifiers&rft.jtitle=IEEE%20access&rft.au=Li,%20Hongmin&rft.date=2020&rft.volume=8&rft.spage=63780&rft.epage=63789&rft.pages=63780-63789&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2984682&rft_dat=%3Cproquest_cross%3E2453699320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453699320&rft_id=info:pmid/&rft_ieee_id=9051831&rft_doaj_id=oai_doaj_org_article_16763e375edc4a9f8d81cf2b82a7d12f&rfr_iscdi=true |