Multimodal Approach of Speech Emotion Recognition Using Multi-Level Multi-Head Fusion Attention-Based Recurrent Neural Network

Speech emotion recognition is a challenging but important task in human computer interaction (HCI). As technology and understanding of emotion are progressing, it is necessary to design robust and reliable emotion recognition systems that are suitable for real-world applications both to enhance anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.61672-61686
Hauptverfasser: Ho, Ngoc-Huynh, Yang, Hyung-Jeong, Kim, Soo-Hyung, Lee, Gueesang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 61686
container_issue
container_start_page 61672
container_title IEEE access
container_volume 8
creator Ho, Ngoc-Huynh
Yang, Hyung-Jeong
Kim, Soo-Hyung
Lee, Gueesang
description Speech emotion recognition is a challenging but important task in human computer interaction (HCI). As technology and understanding of emotion are progressing, it is necessary to design robust and reliable emotion recognition systems that are suitable for real-world applications both to enhance analytical abilities supporting human decision making and to design human-machine interfaces (HMI) that assist efficient communication. This paper presents a multimodal approach for speech emotion recognition based on Multi-Level Multi-Head Fusion Attention mechanism and recurrent neural network (RNN). The proposed structure has inputs of two modalities: audio and text. For audio features, we determine the mel-frequency cepstrum (MFCC) from raw signals using the OpenSMILE toolbox. Further, we use pre-trained model of bidirectional encoder representations from transformers (BERT) for embedding text information. These features are fed parallelly into the self-attention mechanism base RNNs to exploit the context for each timestamp, then we fuse all representatives using multi-head attention technique to predict emotional states. Our experimental results on the three databases: Interactive Emotional Motion Capture (IEMOCAP), Multimodal EmotionLines Dataset (MELD), and CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI), reveal that the combination of the two modalities achieves better performance than using single models. Quantitative and qualitative evaluations on all introduced datasets demonstrate that the proposed algorithm performs favorably against state-of-the-art methods.
doi_str_mv 10.1109/ACCESS.2020.2984368
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2984368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9050806</ieee_id><doaj_id>oai_doaj_org_article_63cdbe69764746259122fabe473948fe</doaj_id><sourcerecordid>2453689797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a8ea3b56c61b4aa5e119685cd348cc7a3cc1ef4bc2e2597fbf6edf9ee47b84a3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOALuETinOJXHPtYqvKQCkgUzpbjrEtKGhc7AXHh23GaCuGLR6OZ2dVOklxgNMEYyavpbDZfLicEETQhUjDKxUFyQjCXGc0pP_yHj5PzENYoPhGpvDhJfh76pqs3rtJNOt1uvdPmLXU2XW4BIppvXFe7Nn0G41ZtvcOvoW5X6c6XLeATmj2-A12lN30YNNOug3ZQZ9c6QDX4e-8jlT5C7-OsR-i-nH8_S46sbgKc7__T5OVm_jK7yxZPt_ez6SIzDIku0wI0LXNuOC6Z1jlgLLnITUWZMKbQ1BgMlpWGAMllYUvLobISgBWlYJqeJvdjbOX0Wm19vdH-Wzldqx3h_Epp39WmAcWpqUrgsuCsYDymYUKsLmMSlUxYiFmXY1Y81kcPoVNr1_s2bq8IizcWspBFVNFRZbwLwYP9m4qRGmpTY21qqE3ta4uui9FVA8CfQ6IcCcTpLzHBlbA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453689797</pqid></control><display><type>article</type><title>Multimodal Approach of Speech Emotion Recognition Using Multi-Level Multi-Head Fusion Attention-Based Recurrent Neural Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ho, Ngoc-Huynh ; Yang, Hyung-Jeong ; Kim, Soo-Hyung ; Lee, Gueesang</creator><creatorcontrib>Ho, Ngoc-Huynh ; Yang, Hyung-Jeong ; Kim, Soo-Hyung ; Lee, Gueesang</creatorcontrib><description>Speech emotion recognition is a challenging but important task in human computer interaction (HCI). As technology and understanding of emotion are progressing, it is necessary to design robust and reliable emotion recognition systems that are suitable for real-world applications both to enhance analytical abilities supporting human decision making and to design human-machine interfaces (HMI) that assist efficient communication. This paper presents a multimodal approach for speech emotion recognition based on Multi-Level Multi-Head Fusion Attention mechanism and recurrent neural network (RNN). The proposed structure has inputs of two modalities: audio and text. For audio features, we determine the mel-frequency cepstrum (MFCC) from raw signals using the OpenSMILE toolbox. Further, we use pre-trained model of bidirectional encoder representations from transformers (BERT) for embedding text information. These features are fed parallelly into the self-attention mechanism base RNNs to exploit the context for each timestamp, then we fuse all representatives using multi-head attention technique to predict emotional states. Our experimental results on the three databases: Interactive Emotional Motion Capture (IEMOCAP), Multimodal EmotionLines Dataset (MELD), and CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI), reveal that the combination of the two modalities achieves better performance than using single models. Quantitative and qualitative evaluations on all introduced datasets demonstrate that the proposed algorithm performs favorably against state-of-the-art methods.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2984368</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; audio features ; Bit error rate ; Coders ; Datasets ; Decision analysis ; Decision making ; Emotion recognition ; Emotions ; Feature extraction ; Hidden Markov models ; Human performance ; Human-computer interface ; Mel frequency cepstral coefficient ; Motion capture ; multi-level multi-head fusion attention ; Neural networks ; Recurrent neural networks ; RNN ; Speech emotion recognition ; Speech recognition ; textual features</subject><ispartof>IEEE access, 2020, Vol.8, p.61672-61686</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a8ea3b56c61b4aa5e119685cd348cc7a3cc1ef4bc2e2597fbf6edf9ee47b84a3</citedby><cites>FETCH-LOGICAL-c408t-a8ea3b56c61b4aa5e119685cd348cc7a3cc1ef4bc2e2597fbf6edf9ee47b84a3</cites><orcidid>0000-0003-3024-5060 ; 0000-0002-8756-1382 ; 0000-0003-3575-5035 ; 0000-0002-7539-2016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9050806$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ho, Ngoc-Huynh</creatorcontrib><creatorcontrib>Yang, Hyung-Jeong</creatorcontrib><creatorcontrib>Kim, Soo-Hyung</creatorcontrib><creatorcontrib>Lee, Gueesang</creatorcontrib><title>Multimodal Approach of Speech Emotion Recognition Using Multi-Level Multi-Head Fusion Attention-Based Recurrent Neural Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>Speech emotion recognition is a challenging but important task in human computer interaction (HCI). As technology and understanding of emotion are progressing, it is necessary to design robust and reliable emotion recognition systems that are suitable for real-world applications both to enhance analytical abilities supporting human decision making and to design human-machine interfaces (HMI) that assist efficient communication. This paper presents a multimodal approach for speech emotion recognition based on Multi-Level Multi-Head Fusion Attention mechanism and recurrent neural network (RNN). The proposed structure has inputs of two modalities: audio and text. For audio features, we determine the mel-frequency cepstrum (MFCC) from raw signals using the OpenSMILE toolbox. Further, we use pre-trained model of bidirectional encoder representations from transformers (BERT) for embedding text information. These features are fed parallelly into the self-attention mechanism base RNNs to exploit the context for each timestamp, then we fuse all representatives using multi-head attention technique to predict emotional states. Our experimental results on the three databases: Interactive Emotional Motion Capture (IEMOCAP), Multimodal EmotionLines Dataset (MELD), and CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI), reveal that the combination of the two modalities achieves better performance than using single models. Quantitative and qualitative evaluations on all introduced datasets demonstrate that the proposed algorithm performs favorably against state-of-the-art methods.</description><subject>Algorithms</subject><subject>audio features</subject><subject>Bit error rate</subject><subject>Coders</subject><subject>Datasets</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Human performance</subject><subject>Human-computer interface</subject><subject>Mel frequency cepstral coefficient</subject><subject>Motion capture</subject><subject>multi-level multi-head fusion attention</subject><subject>Neural networks</subject><subject>Recurrent neural networks</subject><subject>RNN</subject><subject>Speech emotion recognition</subject><subject>Speech recognition</subject><subject>textual features</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOALuETinOJXHPtYqvKQCkgUzpbjrEtKGhc7AXHh23GaCuGLR6OZ2dVOklxgNMEYyavpbDZfLicEETQhUjDKxUFyQjCXGc0pP_yHj5PzENYoPhGpvDhJfh76pqs3rtJNOt1uvdPmLXU2XW4BIppvXFe7Nn0G41ZtvcOvoW5X6c6XLeATmj2-A12lN30YNNOug3ZQZ9c6QDX4e-8jlT5C7-OsR-i-nH8_S46sbgKc7__T5OVm_jK7yxZPt_ez6SIzDIku0wI0LXNuOC6Z1jlgLLnITUWZMKbQ1BgMlpWGAMllYUvLobISgBWlYJqeJvdjbOX0Wm19vdH-Wzldqx3h_Epp39WmAcWpqUrgsuCsYDymYUKsLmMSlUxYiFmXY1Y81kcPoVNr1_s2bq8IizcWspBFVNFRZbwLwYP9m4qRGmpTY21qqE3ta4uui9FVA8CfQ6IcCcTpLzHBlbA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ho, Ngoc-Huynh</creator><creator>Yang, Hyung-Jeong</creator><creator>Kim, Soo-Hyung</creator><creator>Lee, Gueesang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3024-5060</orcidid><orcidid>https://orcid.org/0000-0002-8756-1382</orcidid><orcidid>https://orcid.org/0000-0003-3575-5035</orcidid><orcidid>https://orcid.org/0000-0002-7539-2016</orcidid></search><sort><creationdate>2020</creationdate><title>Multimodal Approach of Speech Emotion Recognition Using Multi-Level Multi-Head Fusion Attention-Based Recurrent Neural Network</title><author>Ho, Ngoc-Huynh ; Yang, Hyung-Jeong ; Kim, Soo-Hyung ; Lee, Gueesang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a8ea3b56c61b4aa5e119685cd348cc7a3cc1ef4bc2e2597fbf6edf9ee47b84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>audio features</topic><topic>Bit error rate</topic><topic>Coders</topic><topic>Datasets</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Human performance</topic><topic>Human-computer interface</topic><topic>Mel frequency cepstral coefficient</topic><topic>Motion capture</topic><topic>multi-level multi-head fusion attention</topic><topic>Neural networks</topic><topic>Recurrent neural networks</topic><topic>RNN</topic><topic>Speech emotion recognition</topic><topic>Speech recognition</topic><topic>textual features</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ho, Ngoc-Huynh</creatorcontrib><creatorcontrib>Yang, Hyung-Jeong</creatorcontrib><creatorcontrib>Kim, Soo-Hyung</creatorcontrib><creatorcontrib>Lee, Gueesang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ho, Ngoc-Huynh</au><au>Yang, Hyung-Jeong</au><au>Kim, Soo-Hyung</au><au>Lee, Gueesang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Approach of Speech Emotion Recognition Using Multi-Level Multi-Head Fusion Attention-Based Recurrent Neural Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>61672</spage><epage>61686</epage><pages>61672-61686</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Speech emotion recognition is a challenging but important task in human computer interaction (HCI). As technology and understanding of emotion are progressing, it is necessary to design robust and reliable emotion recognition systems that are suitable for real-world applications both to enhance analytical abilities supporting human decision making and to design human-machine interfaces (HMI) that assist efficient communication. This paper presents a multimodal approach for speech emotion recognition based on Multi-Level Multi-Head Fusion Attention mechanism and recurrent neural network (RNN). The proposed structure has inputs of two modalities: audio and text. For audio features, we determine the mel-frequency cepstrum (MFCC) from raw signals using the OpenSMILE toolbox. Further, we use pre-trained model of bidirectional encoder representations from transformers (BERT) for embedding text information. These features are fed parallelly into the self-attention mechanism base RNNs to exploit the context for each timestamp, then we fuse all representatives using multi-head attention technique to predict emotional states. Our experimental results on the three databases: Interactive Emotional Motion Capture (IEMOCAP), Multimodal EmotionLines Dataset (MELD), and CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI), reveal that the combination of the two modalities achieves better performance than using single models. Quantitative and qualitative evaluations on all introduced datasets demonstrate that the proposed algorithm performs favorably against state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2984368</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3024-5060</orcidid><orcidid>https://orcid.org/0000-0002-8756-1382</orcidid><orcidid>https://orcid.org/0000-0003-3575-5035</orcidid><orcidid>https://orcid.org/0000-0002-7539-2016</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.61672-61686
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_2984368
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
audio features
Bit error rate
Coders
Datasets
Decision analysis
Decision making
Emotion recognition
Emotions
Feature extraction
Hidden Markov models
Human performance
Human-computer interface
Mel frequency cepstral coefficient
Motion capture
multi-level multi-head fusion attention
Neural networks
Recurrent neural networks
RNN
Speech emotion recognition
Speech recognition
textual features
title Multimodal Approach of Speech Emotion Recognition Using Multi-Level Multi-Head Fusion Attention-Based Recurrent Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T19%3A32%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Approach%20of%20Speech%20Emotion%20Recognition%20Using%20Multi-Level%20Multi-Head%20Fusion%20Attention-Based%20Recurrent%20Neural%20Network&rft.jtitle=IEEE%20access&rft.au=Ho,%20Ngoc-Huynh&rft.date=2020&rft.volume=8&rft.spage=61672&rft.epage=61686&rft.pages=61672-61686&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2984368&rft_dat=%3Cproquest_cross%3E2453689797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453689797&rft_id=info:pmid/&rft_ieee_id=9050806&rft_doaj_id=oai_doaj_org_article_63cdbe69764746259122fabe473948fe&rfr_iscdi=true