Recent Advances of Image Steganography With Generative Adversarial Networks
In the past few years, the Generative Adversarial Network (GAN), which proposed in 2014, has achieved great success. There have been increasing research achievements based on GAN in the field of computer vision and natural language processing. Image steganography is an information security technique...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.60575-60597 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 60597 |
---|---|
container_issue | |
container_start_page | 60575 |
container_title | IEEE access |
container_volume | 8 |
creator | Liu, Jia Ke, Yan Zhang, Zhuo Lei, Yu Li, Jun Zhang, Minqing Yang, Xiaoyuan |
description | In the past few years, the Generative Adversarial Network (GAN), which proposed in 2014, has achieved great success. There have been increasing research achievements based on GAN in the field of computer vision and natural language processing. Image steganography is an information security technique aiming at hiding secret messages in common digital images for covert communication. Recently, research on image steganography has demonstrated great potential by introducing GAN and other neural network techniques. In this paper, we review the art of steganography with GANs according to the different strategies in data hiding, which are cover modification, cover selection, and cover synthesis. We discuss the characteristics of the three strategies of GAN-based steganography and analyze their evaluation metrics. Finally, some existing problems of image steganography with GAN are summarized and discussed. Potential future research topics are also forecasted. |
doi_str_mv | 10.1109/ACCESS.2020.2983175 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2983175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9046754</ieee_id><doaj_id>oai_doaj_org_article_de0c803a3a9945d2bd58b17265a2a7b4</doaj_id><sourcerecordid>2453690088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c79f07c5f117fecc4970a4b76167aba14c6b8ecc0a9f34043a012e6f662beeef3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBqf6CXhY8t-Zrk82xlKpFUbCKxzCbnbRb66Ymq-K_N3VLcS4zPN57M8zLsiElY0qJvppMp7PFYswII2OmS05VcZSdMSr1iBdcHv-bT7OLGNckVZmgQp1ld09ose3ySf0FrcWYe5fP32GJ-aLDJbR-GWC7-slfm26V32CLAbrmC3d8DBFCA5v8AbtvH97ieXbiYBPxYt8H2cv17Hl6O7p_vJlPJ_cjK0jZjazSjihbOEqVQ2uFVgREpSSVCiqgwsqqTDgB7bggggOhDKWTklWI6Pggm_e-tYe12YbmHcKP8dCYP8CHpYHQNXaDpkZiS8KBg9aiqFlVF2VFFZMFMFCVSF6Xvdc2-I9PjJ1Z-8_QpvMNE-ljOr2qTCzes2zwMQZ0h62UmF0Ipg_B7EIw-xCSatirmnT2QaGJkKoQ_BfuAIK6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453690088</pqid></control><display><type>article</type><title>Recent Advances of Image Steganography With Generative Adversarial Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Liu, Jia ; Ke, Yan ; Zhang, Zhuo ; Lei, Yu ; Li, Jun ; Zhang, Minqing ; Yang, Xiaoyuan</creator><creatorcontrib>Liu, Jia ; Ke, Yan ; Zhang, Zhuo ; Lei, Yu ; Li, Jun ; Zhang, Minqing ; Yang, Xiaoyuan</creatorcontrib><description>In the past few years, the Generative Adversarial Network (GAN), which proposed in 2014, has achieved great success. There have been increasing research achievements based on GAN in the field of computer vision and natural language processing. Image steganography is an information security technique aiming at hiding secret messages in common digital images for covert communication. Recently, research on image steganography has demonstrated great potential by introducing GAN and other neural network techniques. In this paper, we review the art of steganography with GANs according to the different strategies in data hiding, which are cover modification, cover selection, and cover synthesis. We discuss the characteristics of the three strategies of GAN-based steganography and analyze their evaluation metrics. Finally, some existing problems of image steganography with GAN are summarized and discussed. Potential future research topics are also forecasted.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2983175</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; Computer vision ; cover synthesis ; Cryptography ; Digital imaging ; Gallium nitride ; generative adversarial nets ; Generative adversarial networks ; generative model ; Graphics ; Image steganography ; Measurement ; Natural language processing ; Neural networks ; Steganography</subject><ispartof>IEEE access, 2020, Vol.8, p.60575-60597</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c79f07c5f117fecc4970a4b76167aba14c6b8ecc0a9f34043a012e6f662beeef3</citedby><cites>FETCH-LOGICAL-c408t-c79f07c5f117fecc4970a4b76167aba14c6b8ecc0a9f34043a012e6f662beeef3</cites><orcidid>0000-0002-6229-9998 ; 0000-0001-8104-0079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9046754$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Ke, Yan</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Zhang, Minqing</creatorcontrib><creatorcontrib>Yang, Xiaoyuan</creatorcontrib><title>Recent Advances of Image Steganography With Generative Adversarial Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the past few years, the Generative Adversarial Network (GAN), which proposed in 2014, has achieved great success. There have been increasing research achievements based on GAN in the field of computer vision and natural language processing. Image steganography is an information security technique aiming at hiding secret messages in common digital images for covert communication. Recently, research on image steganography has demonstrated great potential by introducing GAN and other neural network techniques. In this paper, we review the art of steganography with GANs according to the different strategies in data hiding, which are cover modification, cover selection, and cover synthesis. We discuss the characteristics of the three strategies of GAN-based steganography and analyze their evaluation metrics. Finally, some existing problems of image steganography with GAN are summarized and discussed. Potential future research topics are also forecasted.</description><subject>Computational modeling</subject><subject>Computer vision</subject><subject>cover synthesis</subject><subject>Cryptography</subject><subject>Digital imaging</subject><subject>Gallium nitride</subject><subject>generative adversarial nets</subject><subject>Generative adversarial networks</subject><subject>generative model</subject><subject>Graphics</subject><subject>Image steganography</subject><subject>Measurement</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Steganography</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBqf6CXhY8t-Zrk82xlKpFUbCKxzCbnbRb66Ymq-K_N3VLcS4zPN57M8zLsiElY0qJvppMp7PFYswII2OmS05VcZSdMSr1iBdcHv-bT7OLGNckVZmgQp1ld09ose3ySf0FrcWYe5fP32GJ-aLDJbR-GWC7-slfm26V32CLAbrmC3d8DBFCA5v8AbtvH97ieXbiYBPxYt8H2cv17Hl6O7p_vJlPJ_cjK0jZjazSjihbOEqVQ2uFVgREpSSVCiqgwsqqTDgB7bggggOhDKWTklWI6Pggm_e-tYe12YbmHcKP8dCYP8CHpYHQNXaDpkZiS8KBg9aiqFlVF2VFFZMFMFCVSF6Xvdc2-I9PjJ1Z-8_QpvMNE-ljOr2qTCzes2zwMQZ0h62UmF0Ipg_B7EIw-xCSatirmnT2QaGJkKoQ_BfuAIK6</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Jia</creator><creator>Ke, Yan</creator><creator>Zhang, Zhuo</creator><creator>Lei, Yu</creator><creator>Li, Jun</creator><creator>Zhang, Minqing</creator><creator>Yang, Xiaoyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6229-9998</orcidid><orcidid>https://orcid.org/0000-0001-8104-0079</orcidid></search><sort><creationdate>2020</creationdate><title>Recent Advances of Image Steganography With Generative Adversarial Networks</title><author>Liu, Jia ; Ke, Yan ; Zhang, Zhuo ; Lei, Yu ; Li, Jun ; Zhang, Minqing ; Yang, Xiaoyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c79f07c5f117fecc4970a4b76167aba14c6b8ecc0a9f34043a012e6f662beeef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational modeling</topic><topic>Computer vision</topic><topic>cover synthesis</topic><topic>Cryptography</topic><topic>Digital imaging</topic><topic>Gallium nitride</topic><topic>generative adversarial nets</topic><topic>Generative adversarial networks</topic><topic>generative model</topic><topic>Graphics</topic><topic>Image steganography</topic><topic>Measurement</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Steganography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Ke, Yan</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Zhang, Minqing</creatorcontrib><creatorcontrib>Yang, Xiaoyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jia</au><au>Ke, Yan</au><au>Zhang, Zhuo</au><au>Lei, Yu</au><au>Li, Jun</au><au>Zhang, Minqing</au><au>Yang, Xiaoyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances of Image Steganography With Generative Adversarial Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>60575</spage><epage>60597</epage><pages>60575-60597</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the past few years, the Generative Adversarial Network (GAN), which proposed in 2014, has achieved great success. There have been increasing research achievements based on GAN in the field of computer vision and natural language processing. Image steganography is an information security technique aiming at hiding secret messages in common digital images for covert communication. Recently, research on image steganography has demonstrated great potential by introducing GAN and other neural network techniques. In this paper, we review the art of steganography with GANs according to the different strategies in data hiding, which are cover modification, cover selection, and cover synthesis. We discuss the characteristics of the three strategies of GAN-based steganography and analyze their evaluation metrics. Finally, some existing problems of image steganography with GAN are summarized and discussed. Potential future research topics are also forecasted.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2983175</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6229-9998</orcidid><orcidid>https://orcid.org/0000-0001-8104-0079</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.60575-60597 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_2983175 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Computational modeling Computer vision cover synthesis Cryptography Digital imaging Gallium nitride generative adversarial nets Generative adversarial networks generative model Graphics Image steganography Measurement Natural language processing Neural networks Steganography |
title | Recent Advances of Image Steganography With Generative Adversarial Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20of%20Image%20Steganography%20With%20Generative%20Adversarial%20Networks&rft.jtitle=IEEE%20access&rft.au=Liu,%20Jia&rft.date=2020&rft.volume=8&rft.spage=60575&rft.epage=60597&rft.pages=60575-60597&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2983175&rft_dat=%3Cproquest_cross%3E2453690088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453690088&rft_id=info:pmid/&rft_ieee_id=9046754&rft_doaj_id=oai_doaj_org_article_de0c803a3a9945d2bd58b17265a2a7b4&rfr_iscdi=true |