Recent Advances of Image Steganography With Generative Adversarial Networks

In the past few years, the Generative Adversarial Network (GAN), which proposed in 2014, has achieved great success. There have been increasing research achievements based on GAN in the field of computer vision and natural language processing. Image steganography is an information security technique...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.60575-60597
Hauptverfasser: Liu, Jia, Ke, Yan, Zhang, Zhuo, Lei, Yu, Li, Jun, Zhang, Minqing, Yang, Xiaoyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60597
container_issue
container_start_page 60575
container_title IEEE access
container_volume 8
creator Liu, Jia
Ke, Yan
Zhang, Zhuo
Lei, Yu
Li, Jun
Zhang, Minqing
Yang, Xiaoyuan
description In the past few years, the Generative Adversarial Network (GAN), which proposed in 2014, has achieved great success. There have been increasing research achievements based on GAN in the field of computer vision and natural language processing. Image steganography is an information security technique aiming at hiding secret messages in common digital images for covert communication. Recently, research on image steganography has demonstrated great potential by introducing GAN and other neural network techniques. In this paper, we review the art of steganography with GANs according to the different strategies in data hiding, which are cover modification, cover selection, and cover synthesis. We discuss the characteristics of the three strategies of GAN-based steganography and analyze their evaluation metrics. Finally, some existing problems of image steganography with GAN are summarized and discussed. Potential future research topics are also forecasted.
doi_str_mv 10.1109/ACCESS.2020.2983175
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2983175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9046754</ieee_id><doaj_id>oai_doaj_org_article_de0c803a3a9945d2bd58b17265a2a7b4</doaj_id><sourcerecordid>2453690088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-c79f07c5f117fecc4970a4b76167aba14c6b8ecc0a9f34043a012e6f662beeef3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURBqf6CXhY8t-Zrk82xlKpFUbCKxzCbnbRb66Ymq-K_N3VLcS4zPN57M8zLsiElY0qJvppMp7PFYswII2OmS05VcZSdMSr1iBdcHv-bT7OLGNckVZmgQp1ld09ose3ySf0FrcWYe5fP32GJ-aLDJbR-GWC7-slfm26V32CLAbrmC3d8DBFCA5v8AbtvH97ieXbiYBPxYt8H2cv17Hl6O7p_vJlPJ_cjK0jZjazSjihbOEqVQ2uFVgREpSSVCiqgwsqqTDgB7bggggOhDKWTklWI6Pggm_e-tYe12YbmHcKP8dCYP8CHpYHQNXaDpkZiS8KBg9aiqFlVF2VFFZMFMFCVSF6Xvdc2-I9PjJ1Z-8_QpvMNE-ljOr2qTCzes2zwMQZ0h62UmF0Ipg_B7EIw-xCSatirmnT2QaGJkKoQ_BfuAIK6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453690088</pqid></control><display><type>article</type><title>Recent Advances of Image Steganography With Generative Adversarial Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Liu, Jia ; Ke, Yan ; Zhang, Zhuo ; Lei, Yu ; Li, Jun ; Zhang, Minqing ; Yang, Xiaoyuan</creator><creatorcontrib>Liu, Jia ; Ke, Yan ; Zhang, Zhuo ; Lei, Yu ; Li, Jun ; Zhang, Minqing ; Yang, Xiaoyuan</creatorcontrib><description>In the past few years, the Generative Adversarial Network (GAN), which proposed in 2014, has achieved great success. There have been increasing research achievements based on GAN in the field of computer vision and natural language processing. Image steganography is an information security technique aiming at hiding secret messages in common digital images for covert communication. Recently, research on image steganography has demonstrated great potential by introducing GAN and other neural network techniques. In this paper, we review the art of steganography with GANs according to the different strategies in data hiding, which are cover modification, cover selection, and cover synthesis. We discuss the characteristics of the three strategies of GAN-based steganography and analyze their evaluation metrics. Finally, some existing problems of image steganography with GAN are summarized and discussed. Potential future research topics are also forecasted.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2983175</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational modeling ; Computer vision ; cover synthesis ; Cryptography ; Digital imaging ; Gallium nitride ; generative adversarial nets ; Generative adversarial networks ; generative model ; Graphics ; Image steganography ; Measurement ; Natural language processing ; Neural networks ; Steganography</subject><ispartof>IEEE access, 2020, Vol.8, p.60575-60597</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-c79f07c5f117fecc4970a4b76167aba14c6b8ecc0a9f34043a012e6f662beeef3</citedby><cites>FETCH-LOGICAL-c408t-c79f07c5f117fecc4970a4b76167aba14c6b8ecc0a9f34043a012e6f662beeef3</cites><orcidid>0000-0002-6229-9998 ; 0000-0001-8104-0079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9046754$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Ke, Yan</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Zhang, Minqing</creatorcontrib><creatorcontrib>Yang, Xiaoyuan</creatorcontrib><title>Recent Advances of Image Steganography With Generative Adversarial Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>In the past few years, the Generative Adversarial Network (GAN), which proposed in 2014, has achieved great success. There have been increasing research achievements based on GAN in the field of computer vision and natural language processing. Image steganography is an information security technique aiming at hiding secret messages in common digital images for covert communication. Recently, research on image steganography has demonstrated great potential by introducing GAN and other neural network techniques. In this paper, we review the art of steganography with GANs according to the different strategies in data hiding, which are cover modification, cover selection, and cover synthesis. We discuss the characteristics of the three strategies of GAN-based steganography and analyze their evaluation metrics. Finally, some existing problems of image steganography with GAN are summarized and discussed. Potential future research topics are also forecasted.</description><subject>Computational modeling</subject><subject>Computer vision</subject><subject>cover synthesis</subject><subject>Cryptography</subject><subject>Digital imaging</subject><subject>Gallium nitride</subject><subject>generative adversarial nets</subject><subject>Generative adversarial networks</subject><subject>generative model</subject><subject>Graphics</subject><subject>Image steganography</subject><subject>Measurement</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Steganography</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURBqf6CXhY8t-Zrk82xlKpFUbCKxzCbnbRb66Ymq-K_N3VLcS4zPN57M8zLsiElY0qJvppMp7PFYswII2OmS05VcZSdMSr1iBdcHv-bT7OLGNckVZmgQp1ld09ose3ySf0FrcWYe5fP32GJ-aLDJbR-GWC7-slfm26V32CLAbrmC3d8DBFCA5v8AbtvH97ieXbiYBPxYt8H2cv17Hl6O7p_vJlPJ_cjK0jZjazSjihbOEqVQ2uFVgREpSSVCiqgwsqqTDgB7bggggOhDKWTklWI6Pggm_e-tYe12YbmHcKP8dCYP8CHpYHQNXaDpkZiS8KBg9aiqFlVF2VFFZMFMFCVSF6Xvdc2-I9PjJ1Z-8_QpvMNE-ljOr2qTCzes2zwMQZ0h62UmF0Ipg_B7EIw-xCSatirmnT2QaGJkKoQ_BfuAIK6</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Liu, Jia</creator><creator>Ke, Yan</creator><creator>Zhang, Zhuo</creator><creator>Lei, Yu</creator><creator>Li, Jun</creator><creator>Zhang, Minqing</creator><creator>Yang, Xiaoyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6229-9998</orcidid><orcidid>https://orcid.org/0000-0001-8104-0079</orcidid></search><sort><creationdate>2020</creationdate><title>Recent Advances of Image Steganography With Generative Adversarial Networks</title><author>Liu, Jia ; Ke, Yan ; Zhang, Zhuo ; Lei, Yu ; Li, Jun ; Zhang, Minqing ; Yang, Xiaoyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-c79f07c5f117fecc4970a4b76167aba14c6b8ecc0a9f34043a012e6f662beeef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational modeling</topic><topic>Computer vision</topic><topic>cover synthesis</topic><topic>Cryptography</topic><topic>Digital imaging</topic><topic>Gallium nitride</topic><topic>generative adversarial nets</topic><topic>Generative adversarial networks</topic><topic>generative model</topic><topic>Graphics</topic><topic>Image steganography</topic><topic>Measurement</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Steganography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Ke, Yan</creatorcontrib><creatorcontrib>Zhang, Zhuo</creatorcontrib><creatorcontrib>Lei, Yu</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Zhang, Minqing</creatorcontrib><creatorcontrib>Yang, Xiaoyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jia</au><au>Ke, Yan</au><au>Zhang, Zhuo</au><au>Lei, Yu</au><au>Li, Jun</au><au>Zhang, Minqing</au><au>Yang, Xiaoyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances of Image Steganography With Generative Adversarial Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>60575</spage><epage>60597</epage><pages>60575-60597</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In the past few years, the Generative Adversarial Network (GAN), which proposed in 2014, has achieved great success. There have been increasing research achievements based on GAN in the field of computer vision and natural language processing. Image steganography is an information security technique aiming at hiding secret messages in common digital images for covert communication. Recently, research on image steganography has demonstrated great potential by introducing GAN and other neural network techniques. In this paper, we review the art of steganography with GANs according to the different strategies in data hiding, which are cover modification, cover selection, and cover synthesis. We discuss the characteristics of the three strategies of GAN-based steganography and analyze their evaluation metrics. Finally, some existing problems of image steganography with GAN are summarized and discussed. Potential future research topics are also forecasted.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2983175</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-6229-9998</orcidid><orcidid>https://orcid.org/0000-0001-8104-0079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.60575-60597
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_2983175
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Computational modeling
Computer vision
cover synthesis
Cryptography
Digital imaging
Gallium nitride
generative adversarial nets
Generative adversarial networks
generative model
Graphics
Image steganography
Measurement
Natural language processing
Neural networks
Steganography
title Recent Advances of Image Steganography With Generative Adversarial Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A46%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20of%20Image%20Steganography%20With%20Generative%20Adversarial%20Networks&rft.jtitle=IEEE%20access&rft.au=Liu,%20Jia&rft.date=2020&rft.volume=8&rft.spage=60575&rft.epage=60597&rft.pages=60575-60597&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2983175&rft_dat=%3Cproquest_cross%3E2453690088%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453690088&rft_id=info:pmid/&rft_ieee_id=9046754&rft_doaj_id=oai_doaj_org_article_de0c803a3a9945d2bd58b17265a2a7b4&rfr_iscdi=true