Passenger Flow Forecast of Rail Station Based on Multi-Source Data and Long Short Term Memory Network

The existing rail station passenger flow prediction models are inefficient, due to that most of them use single-source data to predict. In this paper, a novel method is proposed based on multi-layer LSTM, which integrates multi-source traffic data and multi-techniques (including feature selection ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.28475-28483
Hauptverfasser: Zhang, Zhe, Wang, Cheng, Gao, Yueer, Chen, Yewang, Chen, Jianwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28483
container_issue
container_start_page 28475
container_title IEEE access
container_volume 8
creator Zhang, Zhe
Wang, Cheng
Gao, Yueer
Chen, Yewang
Chen, Jianwei
description The existing rail station passenger flow prediction models are inefficient, due to that most of them use single-source data to predict. In this paper, a novel method is proposed based on multi-layer LSTM, which integrates multi-source traffic data and multi-techniques (including feature selection based on Spearman correlation and time feature clustering), to improve the performance of predicting passenger flow. The experimental results show that the multi-source data and the techniques integrated in the model are helpful, and the proposed method obtains a higher prediction accuracy which outperforms other methods (e.g. SARIMA, SVR and BP network) greatly.
doi_str_mv 10.1109/ACCESS.2020.2971771
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2971771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8984375</ieee_id><doaj_id>oai_doaj_org_article_795223b54a0847c3b8e51399a6ca0aa0</doaj_id><sourcerecordid>2454874855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6cc8020f6d18d3c7acdd3b568b58932b0cb2ccf51b5bbeb4a86ec69ace7873753</originalsourceid><addsrcrecordid>eNpNUV1v1DAQjBBIVKW_oC-WeM7hjzi2H8vRg0rXFpHybK2dzZEjFxfbp6r_Hh-pKvZlV6udmR1NVV0yumKMmk9X6_V116045XTFjWJKsTfVGWetqYUU7dv_5vfVRUp7WkqXlVRnFX6HlHDeYSSbKTyRTYjoIWUSBvIDxol0GfIYZvIZEvakDLfHKY91F47RI_kCGQjMPdmGeUe6XyFm8oDxQG7xEOIzucP8FOLvD9W7AaaEFy_9vPq5uX5Yf6u3919v1lfb2jdU57r1XhcXQ9sz3QuvwPe9cLLVTmojuKPece8HyZx0Dl0DukXfGvCotBJKivPqZuHtA-ztYxwPEJ9tgNH-W4S4sxDz6Ce0ykjOC3kDVDfKC6dRMmEMtB4oAC1cHxeuxxj-HDFluy-e5_K-5Y1stGq0PCmK5crHkFLE4VWVUXuKxy7x2FM89iWegrpcUCMiviK00c3JxV9EYIrz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454874855</pqid></control><display><type>article</type><title>Passenger Flow Forecast of Rail Station Based on Multi-Source Data and Long Short Term Memory Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Zhe ; Wang, Cheng ; Gao, Yueer ; Chen, Yewang ; Chen, Jianwei</creator><creatorcontrib>Zhang, Zhe ; Wang, Cheng ; Gao, Yueer ; Chen, Yewang ; Chen, Jianwei</creatorcontrib><description>The existing rail station passenger flow prediction models are inefficient, due to that most of them use single-source data to predict. In this paper, a novel method is proposed based on multi-layer LSTM, which integrates multi-source traffic data and multi-techniques (including feature selection based on Spearman correlation and time feature clustering), to improve the performance of predicting passenger flow. The experimental results show that the multi-source data and the techniques integrated in the model are helpful, and the proposed method obtains a higher prediction accuracy which outperforms other methods (e.g. SARIMA, SVR and BP network) greatly.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2971771</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autoregressive processes ; Clustering ; Clustering algorithms ; Correlation ; Data models ; K-means ; long short term memory network ; multi-source data ; Multilayers ; Passengers ; Performance prediction ; Prediction algorithms ; prediction model ; Prediction models ; Predictive models ; Rail transit passenger flow ; Rails ; Railway engineering ; Railway stations ; spearman correlation ; Traffic information</subject><ispartof>IEEE access, 2020, Vol.8, p.28475-28483</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6cc8020f6d18d3c7acdd3b568b58932b0cb2ccf51b5bbeb4a86ec69ace7873753</citedby><cites>FETCH-LOGICAL-c408t-6cc8020f6d18d3c7acdd3b568b58932b0cb2ccf51b5bbeb4a86ec69ace7873753</cites><orcidid>0000-0003-2465-3914 ; 0000-0001-6075-2878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8984375$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27612,27902,27903,27904,54910</link.rule.ids></links><search><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Gao, Yueer</creatorcontrib><creatorcontrib>Chen, Yewang</creatorcontrib><creatorcontrib>Chen, Jianwei</creatorcontrib><title>Passenger Flow Forecast of Rail Station Based on Multi-Source Data and Long Short Term Memory Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>The existing rail station passenger flow prediction models are inefficient, due to that most of them use single-source data to predict. In this paper, a novel method is proposed based on multi-layer LSTM, which integrates multi-source traffic data and multi-techniques (including feature selection based on Spearman correlation and time feature clustering), to improve the performance of predicting passenger flow. The experimental results show that the multi-source data and the techniques integrated in the model are helpful, and the proposed method obtains a higher prediction accuracy which outperforms other methods (e.g. SARIMA, SVR and BP network) greatly.</description><subject>Autoregressive processes</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Correlation</subject><subject>Data models</subject><subject>K-means</subject><subject>long short term memory network</subject><subject>multi-source data</subject><subject>Multilayers</subject><subject>Passengers</subject><subject>Performance prediction</subject><subject>Prediction algorithms</subject><subject>prediction model</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Rail transit passenger flow</subject><subject>Rails</subject><subject>Railway engineering</subject><subject>Railway stations</subject><subject>spearman correlation</subject><subject>Traffic information</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1v1DAQjBBIVKW_oC-WeM7hjzi2H8vRg0rXFpHybK2dzZEjFxfbp6r_Hh-pKvZlV6udmR1NVV0yumKMmk9X6_V116045XTFjWJKsTfVGWetqYUU7dv_5vfVRUp7WkqXlVRnFX6HlHDeYSSbKTyRTYjoIWUSBvIDxol0GfIYZvIZEvakDLfHKY91F47RI_kCGQjMPdmGeUe6XyFm8oDxQG7xEOIzucP8FOLvD9W7AaaEFy_9vPq5uX5Yf6u3919v1lfb2jdU57r1XhcXQ9sz3QuvwPe9cLLVTmojuKPece8HyZx0Dl0DukXfGvCotBJKivPqZuHtA-ztYxwPEJ9tgNH-W4S4sxDz6Ce0ykjOC3kDVDfKC6dRMmEMtB4oAC1cHxeuxxj-HDFluy-e5_K-5Y1stGq0PCmK5crHkFLE4VWVUXuKxy7x2FM89iWegrpcUCMiviK00c3JxV9EYIrz</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhang, Zhe</creator><creator>Wang, Cheng</creator><creator>Gao, Yueer</creator><creator>Chen, Yewang</creator><creator>Chen, Jianwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2465-3914</orcidid><orcidid>https://orcid.org/0000-0001-6075-2878</orcidid></search><sort><creationdate>2020</creationdate><title>Passenger Flow Forecast of Rail Station Based on Multi-Source Data and Long Short Term Memory Network</title><author>Zhang, Zhe ; Wang, Cheng ; Gao, Yueer ; Chen, Yewang ; Chen, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6cc8020f6d18d3c7acdd3b568b58932b0cb2ccf51b5bbeb4a86ec69ace7873753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autoregressive processes</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Correlation</topic><topic>Data models</topic><topic>K-means</topic><topic>long short term memory network</topic><topic>multi-source data</topic><topic>Multilayers</topic><topic>Passengers</topic><topic>Performance prediction</topic><topic>Prediction algorithms</topic><topic>prediction model</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Rail transit passenger flow</topic><topic>Rails</topic><topic>Railway engineering</topic><topic>Railway stations</topic><topic>spearman correlation</topic><topic>Traffic information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Gao, Yueer</creatorcontrib><creatorcontrib>Chen, Yewang</creatorcontrib><creatorcontrib>Chen, Jianwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhe</au><au>Wang, Cheng</au><au>Gao, Yueer</au><au>Chen, Yewang</au><au>Chen, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passenger Flow Forecast of Rail Station Based on Multi-Source Data and Long Short Term Memory Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>28475</spage><epage>28483</epage><pages>28475-28483</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The existing rail station passenger flow prediction models are inefficient, due to that most of them use single-source data to predict. In this paper, a novel method is proposed based on multi-layer LSTM, which integrates multi-source traffic data and multi-techniques (including feature selection based on Spearman correlation and time feature clustering), to improve the performance of predicting passenger flow. The experimental results show that the multi-source data and the techniques integrated in the model are helpful, and the proposed method obtains a higher prediction accuracy which outperforms other methods (e.g. SARIMA, SVR and BP network) greatly.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2971771</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2465-3914</orcidid><orcidid>https://orcid.org/0000-0001-6075-2878</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.28475-28483
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_2971771
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Autoregressive processes
Clustering
Clustering algorithms
Correlation
Data models
K-means
long short term memory network
multi-source data
Multilayers
Passengers
Performance prediction
Prediction algorithms
prediction model
Prediction models
Predictive models
Rail transit passenger flow
Rails
Railway engineering
Railway stations
spearman correlation
Traffic information
title Passenger Flow Forecast of Rail Station Based on Multi-Source Data and Long Short Term Memory Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passenger%20Flow%20Forecast%20of%20Rail%20Station%20Based%20on%20Multi-Source%20Data%20and%20Long%20Short%20Term%20Memory%20Network&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Zhe&rft.date=2020&rft.volume=8&rft.spage=28475&rft.epage=28483&rft.pages=28475-28483&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2971771&rft_dat=%3Cproquest_cross%3E2454874855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454874855&rft_id=info:pmid/&rft_ieee_id=8984375&rft_doaj_id=oai_doaj_org_article_795223b54a0847c3b8e51399a6ca0aa0&rfr_iscdi=true