Passenger Flow Forecast of Rail Station Based on Multi-Source Data and Long Short Term Memory Network
The existing rail station passenger flow prediction models are inefficient, due to that most of them use single-source data to predict. In this paper, a novel method is proposed based on multi-layer LSTM, which integrates multi-source traffic data and multi-techniques (including feature selection ba...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.28475-28483 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28483 |
---|---|
container_issue | |
container_start_page | 28475 |
container_title | IEEE access |
container_volume | 8 |
creator | Zhang, Zhe Wang, Cheng Gao, Yueer Chen, Yewang Chen, Jianwei |
description | The existing rail station passenger flow prediction models are inefficient, due to that most of them use single-source data to predict. In this paper, a novel method is proposed based on multi-layer LSTM, which integrates multi-source traffic data and multi-techniques (including feature selection based on Spearman correlation and time feature clustering), to improve the performance of predicting passenger flow. The experimental results show that the multi-source data and the techniques integrated in the model are helpful, and the proposed method obtains a higher prediction accuracy which outperforms other methods (e.g. SARIMA, SVR and BP network) greatly. |
doi_str_mv | 10.1109/ACCESS.2020.2971771 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2971771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8984375</ieee_id><doaj_id>oai_doaj_org_article_795223b54a0847c3b8e51399a6ca0aa0</doaj_id><sourcerecordid>2454874855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6cc8020f6d18d3c7acdd3b568b58932b0cb2ccf51b5bbeb4a86ec69ace7873753</originalsourceid><addsrcrecordid>eNpNUV1v1DAQjBBIVKW_oC-WeM7hjzi2H8vRg0rXFpHybK2dzZEjFxfbp6r_Hh-pKvZlV6udmR1NVV0yumKMmk9X6_V116045XTFjWJKsTfVGWetqYUU7dv_5vfVRUp7WkqXlVRnFX6HlHDeYSSbKTyRTYjoIWUSBvIDxol0GfIYZvIZEvakDLfHKY91F47RI_kCGQjMPdmGeUe6XyFm8oDxQG7xEOIzucP8FOLvD9W7AaaEFy_9vPq5uX5Yf6u3919v1lfb2jdU57r1XhcXQ9sz3QuvwPe9cLLVTmojuKPece8HyZx0Dl0DukXfGvCotBJKivPqZuHtA-ztYxwPEJ9tgNH-W4S4sxDz6Ce0ykjOC3kDVDfKC6dRMmEMtB4oAC1cHxeuxxj-HDFluy-e5_K-5Y1stGq0PCmK5crHkFLE4VWVUXuKxy7x2FM89iWegrpcUCMiviK00c3JxV9EYIrz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454874855</pqid></control><display><type>article</type><title>Passenger Flow Forecast of Rail Station Based on Multi-Source Data and Long Short Term Memory Network</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Zhe ; Wang, Cheng ; Gao, Yueer ; Chen, Yewang ; Chen, Jianwei</creator><creatorcontrib>Zhang, Zhe ; Wang, Cheng ; Gao, Yueer ; Chen, Yewang ; Chen, Jianwei</creatorcontrib><description>The existing rail station passenger flow prediction models are inefficient, due to that most of them use single-source data to predict. In this paper, a novel method is proposed based on multi-layer LSTM, which integrates multi-source traffic data and multi-techniques (including feature selection based on Spearman correlation and time feature clustering), to improve the performance of predicting passenger flow. The experimental results show that the multi-source data and the techniques integrated in the model are helpful, and the proposed method obtains a higher prediction accuracy which outperforms other methods (e.g. SARIMA, SVR and BP network) greatly.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2971771</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autoregressive processes ; Clustering ; Clustering algorithms ; Correlation ; Data models ; K-means ; long short term memory network ; multi-source data ; Multilayers ; Passengers ; Performance prediction ; Prediction algorithms ; prediction model ; Prediction models ; Predictive models ; Rail transit passenger flow ; Rails ; Railway engineering ; Railway stations ; spearman correlation ; Traffic information</subject><ispartof>IEEE access, 2020, Vol.8, p.28475-28483</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6cc8020f6d18d3c7acdd3b568b58932b0cb2ccf51b5bbeb4a86ec69ace7873753</citedby><cites>FETCH-LOGICAL-c408t-6cc8020f6d18d3c7acdd3b568b58932b0cb2ccf51b5bbeb4a86ec69ace7873753</cites><orcidid>0000-0003-2465-3914 ; 0000-0001-6075-2878</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8984375$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27612,27902,27903,27904,54910</link.rule.ids></links><search><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Gao, Yueer</creatorcontrib><creatorcontrib>Chen, Yewang</creatorcontrib><creatorcontrib>Chen, Jianwei</creatorcontrib><title>Passenger Flow Forecast of Rail Station Based on Multi-Source Data and Long Short Term Memory Network</title><title>IEEE access</title><addtitle>Access</addtitle><description>The existing rail station passenger flow prediction models are inefficient, due to that most of them use single-source data to predict. In this paper, a novel method is proposed based on multi-layer LSTM, which integrates multi-source traffic data and multi-techniques (including feature selection based on Spearman correlation and time feature clustering), to improve the performance of predicting passenger flow. The experimental results show that the multi-source data and the techniques integrated in the model are helpful, and the proposed method obtains a higher prediction accuracy which outperforms other methods (e.g. SARIMA, SVR and BP network) greatly.</description><subject>Autoregressive processes</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Correlation</subject><subject>Data models</subject><subject>K-means</subject><subject>long short term memory network</subject><subject>multi-source data</subject><subject>Multilayers</subject><subject>Passengers</subject><subject>Performance prediction</subject><subject>Prediction algorithms</subject><subject>prediction model</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Rail transit passenger flow</subject><subject>Rails</subject><subject>Railway engineering</subject><subject>Railway stations</subject><subject>spearman correlation</subject><subject>Traffic information</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1v1DAQjBBIVKW_oC-WeM7hjzi2H8vRg0rXFpHybK2dzZEjFxfbp6r_Hh-pKvZlV6udmR1NVV0yumKMmk9X6_V116045XTFjWJKsTfVGWetqYUU7dv_5vfVRUp7WkqXlVRnFX6HlHDeYSSbKTyRTYjoIWUSBvIDxol0GfIYZvIZEvakDLfHKY91F47RI_kCGQjMPdmGeUe6XyFm8oDxQG7xEOIzucP8FOLvD9W7AaaEFy_9vPq5uX5Yf6u3919v1lfb2jdU57r1XhcXQ9sz3QuvwPe9cLLVTmojuKPece8HyZx0Dl0DukXfGvCotBJKivPqZuHtA-ztYxwPEJ9tgNH-W4S4sxDz6Ce0ykjOC3kDVDfKC6dRMmEMtB4oAC1cHxeuxxj-HDFluy-e5_K-5Y1stGq0PCmK5crHkFLE4VWVUXuKxy7x2FM89iWegrpcUCMiviK00c3JxV9EYIrz</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhang, Zhe</creator><creator>Wang, Cheng</creator><creator>Gao, Yueer</creator><creator>Chen, Yewang</creator><creator>Chen, Jianwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2465-3914</orcidid><orcidid>https://orcid.org/0000-0001-6075-2878</orcidid></search><sort><creationdate>2020</creationdate><title>Passenger Flow Forecast of Rail Station Based on Multi-Source Data and Long Short Term Memory Network</title><author>Zhang, Zhe ; Wang, Cheng ; Gao, Yueer ; Chen, Yewang ; Chen, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6cc8020f6d18d3c7acdd3b568b58932b0cb2ccf51b5bbeb4a86ec69ace7873753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autoregressive processes</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Correlation</topic><topic>Data models</topic><topic>K-means</topic><topic>long short term memory network</topic><topic>multi-source data</topic><topic>Multilayers</topic><topic>Passengers</topic><topic>Performance prediction</topic><topic>Prediction algorithms</topic><topic>prediction model</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Rail transit passenger flow</topic><topic>Rails</topic><topic>Railway engineering</topic><topic>Railway stations</topic><topic>spearman correlation</topic><topic>Traffic information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Gao, Yueer</creatorcontrib><creatorcontrib>Chen, Yewang</creatorcontrib><creatorcontrib>Chen, Jianwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhe</au><au>Wang, Cheng</au><au>Gao, Yueer</au><au>Chen, Yewang</au><au>Chen, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passenger Flow Forecast of Rail Station Based on Multi-Source Data and Long Short Term Memory Network</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>28475</spage><epage>28483</epage><pages>28475-28483</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The existing rail station passenger flow prediction models are inefficient, due to that most of them use single-source data to predict. In this paper, a novel method is proposed based on multi-layer LSTM, which integrates multi-source traffic data and multi-techniques (including feature selection based on Spearman correlation and time feature clustering), to improve the performance of predicting passenger flow. The experimental results show that the multi-source data and the techniques integrated in the model are helpful, and the proposed method obtains a higher prediction accuracy which outperforms other methods (e.g. SARIMA, SVR and BP network) greatly.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2971771</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2465-3914</orcidid><orcidid>https://orcid.org/0000-0001-6075-2878</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.28475-28483 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_2971771 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Autoregressive processes Clustering Clustering algorithms Correlation Data models K-means long short term memory network multi-source data Multilayers Passengers Performance prediction Prediction algorithms prediction model Prediction models Predictive models Rail transit passenger flow Rails Railway engineering Railway stations spearman correlation Traffic information |
title | Passenger Flow Forecast of Rail Station Based on Multi-Source Data and Long Short Term Memory Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passenger%20Flow%20Forecast%20of%20Rail%20Station%20Based%20on%20Multi-Source%20Data%20and%20Long%20Short%20Term%20Memory%20Network&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Zhe&rft.date=2020&rft.volume=8&rft.spage=28475&rft.epage=28483&rft.pages=28475-28483&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2971771&rft_dat=%3Cproquest_cross%3E2454874855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454874855&rft_id=info:pmid/&rft_ieee_id=8984375&rft_doaj_id=oai_doaj_org_article_795223b54a0847c3b8e51399a6ca0aa0&rfr_iscdi=true |