Design of an Optimized Fractional High Order Differential Feedback Controller for Load Frequency Control of a Multi-Area Multi-Source Power System With Nonlinearity

Load frequency control (LFC) is one of the essential process in interconnected power systems. To provide high quality, reliable and stable electrical power, designed controller should perform satisfactorily, i.e. suppress area frequency and tie-line power deviations. Within this scope, in this study...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.12327-12342
1. Verfasser: Sahin, Erdinc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12342
container_issue
container_start_page 12327
container_title IEEE access
container_volume 8
creator Sahin, Erdinc
description Load frequency control (LFC) is one of the essential process in interconnected power systems. To provide high quality, reliable and stable electrical power, designed controller should perform satisfactorily, i.e. suppress area frequency and tie-line power deviations. Within this scope, in this study, a high order differential feedback controller (HODFC) and a developed fractional high order differential feedback controller (FHODFC) are proposed for LFC problem in multi-area power systems for the first time. The gains of the HODFC and FHODFC are optimally tuned by particle swarm optimization (PSO) algorithm aiming to minimize integral of time weighted absolute error (ITAE) performance index. The superiority of the developed FHODFC are verified by comparing reported controller structures in the recent state-of-the-art literature and HODFC for two identical non-reheat thermal power system and two-area multi-source power system consisting of gas, thermal and hydro generation units with/without consideration of HVDC link. To test the robustness of the designed controllers, varying system parameters and loading conditions are investigated. The governor dead band (GDB) and generation rate constraint (GRC) limitations are also considered for the system under study to examine non-linearity handling success of the proposed controllers. Performance results indicate that the developed FHODFC provides better dynamic response and robustness than other published techniques under nonlinearities, random load pattern, and variations in system parameters and loading conditions.
doi_str_mv 10.1109/ACCESS.2020.2966261
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2966261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8957564</ieee_id><doaj_id>oai_doaj_org_article_9a35aa05664a4524926911d355df08c2</doaj_id><sourcerecordid>2454827287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-a2fe6d267d3d3227ef4882873db62689486604914d976e017e12b4cab250a7693</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIoWaODmC3Ih0LNcvkUeDSVuAjh1ADfIkaDFlUNXFl2KRuB-Tz80dJQE4YWL4c7scqYoLgieEoL1j1ldX61WU4opnlItJZXkU3FGidQlE0x-_lB_Lc6HYYvzURkS1Vnx_xIGv-lRaJHt0XKf_M7_A4fm0TbJh9526NpvHtEyOojo0rctROiTz_gcwK1t8wfVoU8xdF1uaENEi2BPfPh7gL45vr2-TEC3hy75chbhrVyFQ2wA3YWnzF4dhwQ79ODTI_oV-s73YKNPx2_Fl9Z2A5y_3pPifn71u74uF8ufN_VsUTZcqFRa2oJ0VFaOOUZpBS1XiqqKuXU2RWmupMRcE-50JQGTCghd88auqcC2kppNiptR1wW7NfvodzYeTbDevAAhboyNyTcdGG2ZsBYLKbnlgnJNpSbEMSFci1VDs9b3UWsfQ3ZiSGabv5r9HAzlgitanTabFGzsamIYhgjt-1SCzSldM6ZrTuma13Qz62JkeQB4Z6gcqJCcPQPjB6Bz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454827287</pqid></control><display><type>article</type><title>Design of an Optimized Fractional High Order Differential Feedback Controller for Load Frequency Control of a Multi-Area Multi-Source Power System With Nonlinearity</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sahin, Erdinc</creator><creatorcontrib>Sahin, Erdinc</creatorcontrib><description>Load frequency control (LFC) is one of the essential process in interconnected power systems. To provide high quality, reliable and stable electrical power, designed controller should perform satisfactorily, i.e. suppress area frequency and tie-line power deviations. Within this scope, in this study, a high order differential feedback controller (HODFC) and a developed fractional high order differential feedback controller (FHODFC) are proposed for LFC problem in multi-area power systems for the first time. The gains of the HODFC and FHODFC are optimally tuned by particle swarm optimization (PSO) algorithm aiming to minimize integral of time weighted absolute error (ITAE) performance index. The superiority of the developed FHODFC are verified by comparing reported controller structures in the recent state-of-the-art literature and HODFC for two identical non-reheat thermal power system and two-area multi-source power system consisting of gas, thermal and hydro generation units with/without consideration of HVDC link. To test the robustness of the designed controllers, varying system parameters and loading conditions are investigated. The governor dead band (GDB) and generation rate constraint (GRC) limitations are also considered for the system under study to examine non-linearity handling success of the proposed controllers. Performance results indicate that the developed FHODFC provides better dynamic response and robustness than other published techniques under nonlinearities, random load pattern, and variations in system parameters and loading conditions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2966261</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Algorithms ; Control systems ; Control systems design ; Design optimization ; Dynamic response ; Electric power systems ; Feedback control ; fractional calculus ; fractional high order differential feedback controller ; Frequency control ; generation rate constraint ; governor dead band ; Heuristic algorithms ; Linearity ; Load frequency control ; Nonlinearity ; Optimization ; Parameters ; Particle swarm optimization ; Performance indices ; Power systems ; random load pattern ; Random loads ; Robust control ; Robustness ; robustness and transient response analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.12327-12342</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-a2fe6d267d3d3227ef4882873db62689486604914d976e017e12b4cab250a7693</citedby><cites>FETCH-LOGICAL-c458t-a2fe6d267d3d3227ef4882873db62689486604914d976e017e12b4cab250a7693</cites><orcidid>0000-0002-9740-599X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8957564$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Sahin, Erdinc</creatorcontrib><title>Design of an Optimized Fractional High Order Differential Feedback Controller for Load Frequency Control of a Multi-Area Multi-Source Power System With Nonlinearity</title><title>IEEE access</title><addtitle>Access</addtitle><description>Load frequency control (LFC) is one of the essential process in interconnected power systems. To provide high quality, reliable and stable electrical power, designed controller should perform satisfactorily, i.e. suppress area frequency and tie-line power deviations. Within this scope, in this study, a high order differential feedback controller (HODFC) and a developed fractional high order differential feedback controller (FHODFC) are proposed for LFC problem in multi-area power systems for the first time. The gains of the HODFC and FHODFC are optimally tuned by particle swarm optimization (PSO) algorithm aiming to minimize integral of time weighted absolute error (ITAE) performance index. The superiority of the developed FHODFC are verified by comparing reported controller structures in the recent state-of-the-art literature and HODFC for two identical non-reheat thermal power system and two-area multi-source power system consisting of gas, thermal and hydro generation units with/without consideration of HVDC link. To test the robustness of the designed controllers, varying system parameters and loading conditions are investigated. The governor dead band (GDB) and generation rate constraint (GRC) limitations are also considered for the system under study to examine non-linearity handling success of the proposed controllers. Performance results indicate that the developed FHODFC provides better dynamic response and robustness than other published techniques under nonlinearities, random load pattern, and variations in system parameters and loading conditions.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Design optimization</subject><subject>Dynamic response</subject><subject>Electric power systems</subject><subject>Feedback control</subject><subject>fractional calculus</subject><subject>fractional high order differential feedback controller</subject><subject>Frequency control</subject><subject>generation rate constraint</subject><subject>governor dead band</subject><subject>Heuristic algorithms</subject><subject>Linearity</subject><subject>Load frequency control</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Performance indices</subject><subject>Power systems</subject><subject>random load pattern</subject><subject>Random loads</subject><subject>Robust control</subject><subject>Robustness</subject><subject>robustness and transient response analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIoWaODmC3Ih0LNcvkUeDSVuAjh1ADfIkaDFlUNXFl2KRuB-Tz80dJQE4YWL4c7scqYoLgieEoL1j1ldX61WU4opnlItJZXkU3FGidQlE0x-_lB_Lc6HYYvzURkS1Vnx_xIGv-lRaJHt0XKf_M7_A4fm0TbJh9526NpvHtEyOojo0rctROiTz_gcwK1t8wfVoU8xdF1uaENEi2BPfPh7gL45vr2-TEC3hy75chbhrVyFQ2wA3YWnzF4dhwQ79ODTI_oV-s73YKNPx2_Fl9Z2A5y_3pPifn71u74uF8ufN_VsUTZcqFRa2oJ0VFaOOUZpBS1XiqqKuXU2RWmupMRcE-50JQGTCghd88auqcC2kppNiptR1wW7NfvodzYeTbDevAAhboyNyTcdGG2ZsBYLKbnlgnJNpSbEMSFci1VDs9b3UWsfQ3ZiSGabv5r9HAzlgitanTabFGzsamIYhgjt-1SCzSldM6ZrTuma13Qz62JkeQB4Z6gcqJCcPQPjB6Bz</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Sahin, Erdinc</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9740-599X</orcidid></search><sort><creationdate>2020</creationdate><title>Design of an Optimized Fractional High Order Differential Feedback Controller for Load Frequency Control of a Multi-Area Multi-Source Power System With Nonlinearity</title><author>Sahin, Erdinc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-a2fe6d267d3d3227ef4882873db62689486604914d976e017e12b4cab250a7693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Design optimization</topic><topic>Dynamic response</topic><topic>Electric power systems</topic><topic>Feedback control</topic><topic>fractional calculus</topic><topic>fractional high order differential feedback controller</topic><topic>Frequency control</topic><topic>generation rate constraint</topic><topic>governor dead band</topic><topic>Heuristic algorithms</topic><topic>Linearity</topic><topic>Load frequency control</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Performance indices</topic><topic>Power systems</topic><topic>random load pattern</topic><topic>Random loads</topic><topic>Robust control</topic><topic>Robustness</topic><topic>robustness and transient response analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sahin, Erdinc</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sahin, Erdinc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of an Optimized Fractional High Order Differential Feedback Controller for Load Frequency Control of a Multi-Area Multi-Source Power System With Nonlinearity</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>12327</spage><epage>12342</epage><pages>12327-12342</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Load frequency control (LFC) is one of the essential process in interconnected power systems. To provide high quality, reliable and stable electrical power, designed controller should perform satisfactorily, i.e. suppress area frequency and tie-line power deviations. Within this scope, in this study, a high order differential feedback controller (HODFC) and a developed fractional high order differential feedback controller (FHODFC) are proposed for LFC problem in multi-area power systems for the first time. The gains of the HODFC and FHODFC are optimally tuned by particle swarm optimization (PSO) algorithm aiming to minimize integral of time weighted absolute error (ITAE) performance index. The superiority of the developed FHODFC are verified by comparing reported controller structures in the recent state-of-the-art literature and HODFC for two identical non-reheat thermal power system and two-area multi-source power system consisting of gas, thermal and hydro generation units with/without consideration of HVDC link. To test the robustness of the designed controllers, varying system parameters and loading conditions are investigated. The governor dead band (GDB) and generation rate constraint (GRC) limitations are also considered for the system under study to examine non-linearity handling success of the proposed controllers. Performance results indicate that the developed FHODFC provides better dynamic response and robustness than other published techniques under nonlinearities, random load pattern, and variations in system parameters and loading conditions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2966261</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9740-599X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.12327-12342
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_2966261
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptive control
Algorithms
Control systems
Control systems design
Design optimization
Dynamic response
Electric power systems
Feedback control
fractional calculus
fractional high order differential feedback controller
Frequency control
generation rate constraint
governor dead band
Heuristic algorithms
Linearity
Load frequency control
Nonlinearity
Optimization
Parameters
Particle swarm optimization
Performance indices
Power systems
random load pattern
Random loads
Robust control
Robustness
robustness and transient response analysis
title Design of an Optimized Fractional High Order Differential Feedback Controller for Load Frequency Control of a Multi-Area Multi-Source Power System With Nonlinearity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20an%20Optimized%20Fractional%20High%20Order%20Differential%20Feedback%20Controller%20for%20Load%20Frequency%20Control%20of%20a%20Multi-Area%20Multi-Source%20Power%20System%20With%20Nonlinearity&rft.jtitle=IEEE%20access&rft.au=Sahin,%20Erdinc&rft.date=2020&rft.volume=8&rft.spage=12327&rft.epage=12342&rft.pages=12327-12342&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2966261&rft_dat=%3Cproquest_cross%3E2454827287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454827287&rft_id=info:pmid/&rft_ieee_id=8957564&rft_doaj_id=oai_doaj_org_article_9a35aa05664a4524926911d355df08c2&rfr_iscdi=true