CODES: Efficient Incremental Semi-Supervised Classification Over Drifting and Evolving Social Streams

Classification over data streams is a crucial task of explosive social stream mining and computing. Efficient learning techniques provide high-quality services in the aspect of content distribution and event browsing. Due to the concept drift and concept evolution in data streams, the classification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.14024-14035
Hauptverfasser: Bi, Xin, Zhang, Chao, Zhao, Xiangguo, Li, Donghang, Sun, Yongjiao, Ma, Yuliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14035
container_issue
container_start_page 14024
container_title IEEE access
container_volume 8
creator Bi, Xin
Zhang, Chao
Zhao, Xiangguo
Li, Donghang
Sun, Yongjiao
Ma, Yuliang
description Classification over data streams is a crucial task of explosive social stream mining and computing. Efficient learning techniques provide high-quality services in the aspect of content distribution and event browsing. Due to the concept drift and concept evolution in data streams, the classification performance degrades drastically over time. Many existing methods utilize supervised and unsupervised learning strategies. However, supervised strategies require labeled emerging records to update the classifiers, which is unfeasible to work in the practical social stream applications. Although unsupervised strategies are popularly applied to detect concept evolution, it takes tremendous run-time computation cost to run online clustering. To this end, in this paper, we address these major challenges of social stream classification by proposing an efficient incremental semi-supervised classification method named CODES (Classification Over Drifting and Evolving Stream). The proposed CODES method consists of an efficient incremental semi-supervised learning module and a dynamic novelty threshold update module. Thus, in the drifting and evolving social streams, CODES is able to provide: 1) semi-supervised learning ability to eliminate dependency on the labels of emerging records; 2) fast incremental learning with real-time update ability to tackle concept drift; 3) efficient novel class detection ability to tackle concept evolution. Extensive experiments are conducted on several real-world datasets. The results indicate a higher performance than several state-of-the-art methods. CODES achieves efficient learning performance over drifting and evolving social streams, which improves practical significance in the real-world social stream applications.
doi_str_mv 10.1109/ACCESS.2020.2965766
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2965766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8955838</ieee_id><doaj_id>oai_doaj_org_article_9f3667e63fdb4a4899d47a4900f17752</doaj_id><sourcerecordid>2454746407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-4c7aa01d6388881ac11022f5cd6bec14c77e8d9a0a12547e13452982d03bfcbe3</originalsourceid><addsrcrecordid>eNpNUctqGzEUHUoLDWm-IJuBrsfV-9FdmExbQ8CLSdZClq6CzHjkSmND_75yJ4TezX3onHOvOE1zj9EGY6S_PfT9MI4bggjaEC24FOJDc0Ow0B3lVHz8r_7c3JVyQDVUHXF500C_exzG7-0QQnQR5qXdzi7DsVZ2akc4xm48nyBfYgHf9pMtJVakXWKa290FcvuYY1ji_Nra2bfDJU2XazMmF68CSwZ7LF-aT8FOBe7e8m3z8mN47n91T7uf2_7hqXMMqaVjTlqLsBdU1cDW1f8RErjzYg8O12cJymuLLCacScCUcaIV8Yjug9sDvW22q65P9mBOOR5t_mOSjebfIOVXY_MS3QRGByqEBEGD3zPLlNaeScs0QgFLyUnV-rpqnXL6fYaymEM657mebwir25lgSFYUXVEup1IyhPetGJmrPWa1x1ztMW_2VNb9yooA8M5QmnNFFf0LSB2Kpg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454746407</pqid></control><display><type>article</type><title>CODES: Efficient Incremental Semi-Supervised Classification Over Drifting and Evolving Social Streams</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Bi, Xin ; Zhang, Chao ; Zhao, Xiangguo ; Li, Donghang ; Sun, Yongjiao ; Ma, Yuliang</creator><creatorcontrib>Bi, Xin ; Zhang, Chao ; Zhao, Xiangguo ; Li, Donghang ; Sun, Yongjiao ; Ma, Yuliang</creatorcontrib><description>Classification over data streams is a crucial task of explosive social stream mining and computing. Efficient learning techniques provide high-quality services in the aspect of content distribution and event browsing. Due to the concept drift and concept evolution in data streams, the classification performance degrades drastically over time. Many existing methods utilize supervised and unsupervised learning strategies. However, supervised strategies require labeled emerging records to update the classifiers, which is unfeasible to work in the practical social stream applications. Although unsupervised strategies are popularly applied to detect concept evolution, it takes tremendous run-time computation cost to run online clustering. To this end, in this paper, we address these major challenges of social stream classification by proposing an efficient incremental semi-supervised classification method named CODES (Classification Over Drifting and Evolving Stream). The proposed CODES method consists of an efficient incremental semi-supervised learning module and a dynamic novelty threshold update module. Thus, in the drifting and evolving social streams, CODES is able to provide: 1) semi-supervised learning ability to eliminate dependency on the labels of emerging records; 2) fast incremental learning with real-time update ability to tackle concept drift; 3) efficient novel class detection ability to tackle concept evolution. Extensive experiments are conducted on several real-world datasets. The results indicate a higher performance than several state-of-the-art methods. CODES achieves efficient learning performance over drifting and evolving social streams, which improves practical significance in the real-world social stream applications.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2965766</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Browsing ; Classification ; Clustering ; Data transmission ; Drift ; Evolution ; extreme learning machine ; Feeds ; incremental learning ; Modules ; Performance degradation ; Real-time systems ; Run time (computers) ; semi-supervised learning ; Semisupervised learning ; Social networking (online) ; Social stream ; Supervised learning ; Training ; Unsupervised learning</subject><ispartof>IEEE access, 2020, Vol.8, p.14024-14035</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-4c7aa01d6388881ac11022f5cd6bec14c77e8d9a0a12547e13452982d03bfcbe3</citedby><cites>FETCH-LOGICAL-c408t-4c7aa01d6388881ac11022f5cd6bec14c77e8d9a0a12547e13452982d03bfcbe3</cites><orcidid>0000-0002-2645-1112 ; 0000-0003-1892-5549 ; 0000-0003-3373-0723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8955838$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Bi, Xin</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Zhao, Xiangguo</creatorcontrib><creatorcontrib>Li, Donghang</creatorcontrib><creatorcontrib>Sun, Yongjiao</creatorcontrib><creatorcontrib>Ma, Yuliang</creatorcontrib><title>CODES: Efficient Incremental Semi-Supervised Classification Over Drifting and Evolving Social Streams</title><title>IEEE access</title><addtitle>Access</addtitle><description>Classification over data streams is a crucial task of explosive social stream mining and computing. Efficient learning techniques provide high-quality services in the aspect of content distribution and event browsing. Due to the concept drift and concept evolution in data streams, the classification performance degrades drastically over time. Many existing methods utilize supervised and unsupervised learning strategies. However, supervised strategies require labeled emerging records to update the classifiers, which is unfeasible to work in the practical social stream applications. Although unsupervised strategies are popularly applied to detect concept evolution, it takes tremendous run-time computation cost to run online clustering. To this end, in this paper, we address these major challenges of social stream classification by proposing an efficient incremental semi-supervised classification method named CODES (Classification Over Drifting and Evolving Stream). The proposed CODES method consists of an efficient incremental semi-supervised learning module and a dynamic novelty threshold update module. Thus, in the drifting and evolving social streams, CODES is able to provide: 1) semi-supervised learning ability to eliminate dependency on the labels of emerging records; 2) fast incremental learning with real-time update ability to tackle concept drift; 3) efficient novel class detection ability to tackle concept evolution. Extensive experiments are conducted on several real-world datasets. The results indicate a higher performance than several state-of-the-art methods. CODES achieves efficient learning performance over drifting and evolving social streams, which improves practical significance in the real-world social stream applications.</description><subject>Browsing</subject><subject>Classification</subject><subject>Clustering</subject><subject>Data transmission</subject><subject>Drift</subject><subject>Evolution</subject><subject>extreme learning machine</subject><subject>Feeds</subject><subject>incremental learning</subject><subject>Modules</subject><subject>Performance degradation</subject><subject>Real-time systems</subject><subject>Run time (computers)</subject><subject>semi-supervised learning</subject><subject>Semisupervised learning</subject><subject>Social networking (online)</subject><subject>Social stream</subject><subject>Supervised learning</subject><subject>Training</subject><subject>Unsupervised learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctqGzEUHUoLDWm-IJuBrsfV-9FdmExbQ8CLSdZClq6CzHjkSmND_75yJ4TezX3onHOvOE1zj9EGY6S_PfT9MI4bggjaEC24FOJDc0Ow0B3lVHz8r_7c3JVyQDVUHXF500C_exzG7-0QQnQR5qXdzi7DsVZ2akc4xm48nyBfYgHf9pMtJVakXWKa290FcvuYY1ji_Nra2bfDJU2XazMmF68CSwZ7LF-aT8FOBe7e8m3z8mN47n91T7uf2_7hqXMMqaVjTlqLsBdU1cDW1f8RErjzYg8O12cJymuLLCacScCUcaIV8Yjug9sDvW22q65P9mBOOR5t_mOSjebfIOVXY_MS3QRGByqEBEGD3zPLlNaeScs0QgFLyUnV-rpqnXL6fYaymEM657mebwir25lgSFYUXVEup1IyhPetGJmrPWa1x1ztMW_2VNb9yooA8M5QmnNFFf0LSB2Kpg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Bi, Xin</creator><creator>Zhang, Chao</creator><creator>Zhao, Xiangguo</creator><creator>Li, Donghang</creator><creator>Sun, Yongjiao</creator><creator>Ma, Yuliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2645-1112</orcidid><orcidid>https://orcid.org/0000-0003-1892-5549</orcidid><orcidid>https://orcid.org/0000-0003-3373-0723</orcidid></search><sort><creationdate>2020</creationdate><title>CODES: Efficient Incremental Semi-Supervised Classification Over Drifting and Evolving Social Streams</title><author>Bi, Xin ; Zhang, Chao ; Zhao, Xiangguo ; Li, Donghang ; Sun, Yongjiao ; Ma, Yuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-4c7aa01d6388881ac11022f5cd6bec14c77e8d9a0a12547e13452982d03bfcbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Browsing</topic><topic>Classification</topic><topic>Clustering</topic><topic>Data transmission</topic><topic>Drift</topic><topic>Evolution</topic><topic>extreme learning machine</topic><topic>Feeds</topic><topic>incremental learning</topic><topic>Modules</topic><topic>Performance degradation</topic><topic>Real-time systems</topic><topic>Run time (computers)</topic><topic>semi-supervised learning</topic><topic>Semisupervised learning</topic><topic>Social networking (online)</topic><topic>Social stream</topic><topic>Supervised learning</topic><topic>Training</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Xin</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Zhao, Xiangguo</creatorcontrib><creatorcontrib>Li, Donghang</creatorcontrib><creatorcontrib>Sun, Yongjiao</creatorcontrib><creatorcontrib>Ma, Yuliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Xin</au><au>Zhang, Chao</au><au>Zhao, Xiangguo</au><au>Li, Donghang</au><au>Sun, Yongjiao</au><au>Ma, Yuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CODES: Efficient Incremental Semi-Supervised Classification Over Drifting and Evolving Social Streams</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>14024</spage><epage>14035</epage><pages>14024-14035</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Classification over data streams is a crucial task of explosive social stream mining and computing. Efficient learning techniques provide high-quality services in the aspect of content distribution and event browsing. Due to the concept drift and concept evolution in data streams, the classification performance degrades drastically over time. Many existing methods utilize supervised and unsupervised learning strategies. However, supervised strategies require labeled emerging records to update the classifiers, which is unfeasible to work in the practical social stream applications. Although unsupervised strategies are popularly applied to detect concept evolution, it takes tremendous run-time computation cost to run online clustering. To this end, in this paper, we address these major challenges of social stream classification by proposing an efficient incremental semi-supervised classification method named CODES (Classification Over Drifting and Evolving Stream). The proposed CODES method consists of an efficient incremental semi-supervised learning module and a dynamic novelty threshold update module. Thus, in the drifting and evolving social streams, CODES is able to provide: 1) semi-supervised learning ability to eliminate dependency on the labels of emerging records; 2) fast incremental learning with real-time update ability to tackle concept drift; 3) efficient novel class detection ability to tackle concept evolution. Extensive experiments are conducted on several real-world datasets. The results indicate a higher performance than several state-of-the-art methods. CODES achieves efficient learning performance over drifting and evolving social streams, which improves practical significance in the real-world social stream applications.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2965766</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2645-1112</orcidid><orcidid>https://orcid.org/0000-0003-1892-5549</orcidid><orcidid>https://orcid.org/0000-0003-3373-0723</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.14024-14035
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_2965766
source DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Browsing
Classification
Clustering
Data transmission
Drift
Evolution
extreme learning machine
Feeds
incremental learning
Modules
Performance degradation
Real-time systems
Run time (computers)
semi-supervised learning
Semisupervised learning
Social networking (online)
Social stream
Supervised learning
Training
Unsupervised learning
title CODES: Efficient Incremental Semi-Supervised Classification Over Drifting and Evolving Social Streams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CODES:%20Efficient%20Incremental%20Semi-Supervised%20Classification%20Over%20Drifting%20and%20Evolving%20Social%20Streams&rft.jtitle=IEEE%20access&rft.au=Bi,%20Xin&rft.date=2020&rft.volume=8&rft.spage=14024&rft.epage=14035&rft.pages=14024-14035&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2965766&rft_dat=%3Cproquest_cross%3E2454746407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454746407&rft_id=info:pmid/&rft_ieee_id=8955838&rft_doaj_id=oai_doaj_org_article_9f3667e63fdb4a4899d47a4900f17752&rfr_iscdi=true