Color Point Cloud Registration Based on Supervoxel Correspondence

With the development of RGBD sensors, the high-quality color point cloud can be obtained expediently. In this paper, we propose a novel registration method for 3D color point clouds from different views, which is a critical issue in many applications. Different from traditional feature-based methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.7362-7372
Hauptverfasser: Yang, Yang, Chen, Weile, Wang, Muyi, Zhong, Dexing, Du, Shaoyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7372
container_issue
container_start_page 7362
container_title IEEE access
container_volume 8
creator Yang, Yang
Chen, Weile
Wang, Muyi
Zhong, Dexing
Du, Shaoyi
description With the development of RGBD sensors, the high-quality color point cloud can be obtained expediently. In this paper, we propose a novel registration method for 3D color point clouds from different views, which is a critical issue in many applications. Different from traditional feature-based methods, we design a hybrid feature representation with color moments of the point, which could be applied naturally for any color point cloud. And these features are extracted from point clouds based on the supervoxel segmentation. By jointly conducting these features for similarity measure, a weight parameter is dynamically adapted between the color and the spatial information. The registration algorithm is under a classic iterative framework for building the correspondence and estimating transformation parameters. In addition, we provide a mutual correspondence matching condition with hybrid features to build some more robust relationships for estimating transformation parameters. Experimental results demonstrate that our method can effectively reduce the number of point data for registration and achieve good matching results even in a poor initial condition.
doi_str_mv 10.1109/ACCESS.2020.2963987
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2963987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8950119</ieee_id><doaj_id>oai_doaj_org_article_dbe014e87ac047d39155582e35e38747</doaj_id><sourcerecordid>2454870240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-49c99d02555ef057e8a7aaf21d839ee0a32004d304e91f4b152df7124f30116d3</originalsourceid><addsrcrecordid>eNpNUE1LAzEQXUTBUvsLelnw3Dr5apJjXaoWCorVc0g3s2XLuqnJVvTfm7qlOJd5DO-9mXlZNiYwJQT03bwoFuv1lAKFKdUzppW8yAaUzPSECTa7_Ievs1GMO0il0kjIQTYvfOND_uLrtsuLxh9c_orbOnbBdrVv83sb0eUJrA97DF_-G5u88CFg3PvWYVviTXZV2Sbi6NSH2fvD4q14mqyeH5fFfDUpOahuwnWptQMqhMAKhERlpbUVJU4xjQiWUQDuGHDUpOIbIqirJKG8YkDIzLFhtux9nbc7sw_1hw0_xtva_A182Boburps0LgNAuGopC2BS8c0SVsVRSaQKcll8rrtvfbBfx4wdmbnD6FN5xvKBVcSKIfEYj2rDD7GgNV5KwFzjN700Ztj9OYUfVKNe1WNiGeF0iK9odkv53N9Zg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454870240</pqid></control><display><type>article</type><title>Color Point Cloud Registration Based on Supervoxel Correspondence</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Yang ; Chen, Weile ; Wang, Muyi ; Zhong, Dexing ; Du, Shaoyi</creator><creatorcontrib>Yang, Yang ; Chen, Weile ; Wang, Muyi ; Zhong, Dexing ; Du, Shaoyi</creatorcontrib><description>With the development of RGBD sensors, the high-quality color point cloud can be obtained expediently. In this paper, we propose a novel registration method for 3D color point clouds from different views, which is a critical issue in many applications. Different from traditional feature-based methods, we design a hybrid feature representation with color moments of the point, which could be applied naturally for any color point cloud. And these features are extracted from point clouds based on the supervoxel segmentation. By jointly conducting these features for similarity measure, a weight parameter is dynamically adapted between the color and the spatial information. The registration algorithm is under a classic iterative framework for building the correspondence and estimating transformation parameters. In addition, we provide a mutual correspondence matching condition with hybrid features to build some more robust relationships for estimating transformation parameters. Experimental results demonstrate that our method can effectively reduce the number of point data for registration and achieve good matching results even in a poor initial condition.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2963987</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Color ; Color point cloud registration ; Colored noise ; Estimation ; Feature extraction ; hybrid feature ; Image color analysis ; Image segmentation ; Matching ; mutual correspondence matching ; Object recognition ; Parameter estimation ; Registration ; Shape ; Spatial data ; Three dimensional models ; Three-dimensional displays</subject><ispartof>IEEE access, 2020, Vol.8, p.7362-7372</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-49c99d02555ef057e8a7aaf21d839ee0a32004d304e91f4b152df7124f30116d3</citedby><cites>FETCH-LOGICAL-c408t-49c99d02555ef057e8a7aaf21d839ee0a32004d304e91f4b152df7124f30116d3</cites><orcidid>0000-0002-6806-6300 ; 0000-0003-1766-827X ; 0000-0002-7092-0596 ; 0000-0001-5679-2332 ; 0000-0001-8687-4427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8950119$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Chen, Weile</creatorcontrib><creatorcontrib>Wang, Muyi</creatorcontrib><creatorcontrib>Zhong, Dexing</creatorcontrib><creatorcontrib>Du, Shaoyi</creatorcontrib><title>Color Point Cloud Registration Based on Supervoxel Correspondence</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the development of RGBD sensors, the high-quality color point cloud can be obtained expediently. In this paper, we propose a novel registration method for 3D color point clouds from different views, which is a critical issue in many applications. Different from traditional feature-based methods, we design a hybrid feature representation with color moments of the point, which could be applied naturally for any color point cloud. And these features are extracted from point clouds based on the supervoxel segmentation. By jointly conducting these features for similarity measure, a weight parameter is dynamically adapted between the color and the spatial information. The registration algorithm is under a classic iterative framework for building the correspondence and estimating transformation parameters. In addition, we provide a mutual correspondence matching condition with hybrid features to build some more robust relationships for estimating transformation parameters. Experimental results demonstrate that our method can effectively reduce the number of point data for registration and achieve good matching results even in a poor initial condition.</description><subject>Algorithms</subject><subject>Color</subject><subject>Color point cloud registration</subject><subject>Colored noise</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>hybrid feature</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Matching</subject><subject>mutual correspondence matching</subject><subject>Object recognition</subject><subject>Parameter estimation</subject><subject>Registration</subject><subject>Shape</subject><subject>Spatial data</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQXUTBUvsLelnw3Dr5apJjXaoWCorVc0g3s2XLuqnJVvTfm7qlOJd5DO-9mXlZNiYwJQT03bwoFuv1lAKFKdUzppW8yAaUzPSECTa7_Ievs1GMO0il0kjIQTYvfOND_uLrtsuLxh9c_orbOnbBdrVv83sb0eUJrA97DF_-G5u88CFg3PvWYVviTXZV2Sbi6NSH2fvD4q14mqyeH5fFfDUpOahuwnWptQMqhMAKhERlpbUVJU4xjQiWUQDuGHDUpOIbIqirJKG8YkDIzLFhtux9nbc7sw_1hw0_xtva_A182Boburps0LgNAuGopC2BS8c0SVsVRSaQKcll8rrtvfbBfx4wdmbnD6FN5xvKBVcSKIfEYj2rDD7GgNV5KwFzjN700Ztj9OYUfVKNe1WNiGeF0iK9odkv53N9Zg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Yang, Yang</creator><creator>Chen, Weile</creator><creator>Wang, Muyi</creator><creator>Zhong, Dexing</creator><creator>Du, Shaoyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6806-6300</orcidid><orcidid>https://orcid.org/0000-0003-1766-827X</orcidid><orcidid>https://orcid.org/0000-0002-7092-0596</orcidid><orcidid>https://orcid.org/0000-0001-5679-2332</orcidid><orcidid>https://orcid.org/0000-0001-8687-4427</orcidid></search><sort><creationdate>2020</creationdate><title>Color Point Cloud Registration Based on Supervoxel Correspondence</title><author>Yang, Yang ; Chen, Weile ; Wang, Muyi ; Zhong, Dexing ; Du, Shaoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-49c99d02555ef057e8a7aaf21d839ee0a32004d304e91f4b152df7124f30116d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Color</topic><topic>Color point cloud registration</topic><topic>Colored noise</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>hybrid feature</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Matching</topic><topic>mutual correspondence matching</topic><topic>Object recognition</topic><topic>Parameter estimation</topic><topic>Registration</topic><topic>Shape</topic><topic>Spatial data</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Chen, Weile</creatorcontrib><creatorcontrib>Wang, Muyi</creatorcontrib><creatorcontrib>Zhong, Dexing</creatorcontrib><creatorcontrib>Du, Shaoyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yang</au><au>Chen, Weile</au><au>Wang, Muyi</au><au>Zhong, Dexing</au><au>Du, Shaoyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Color Point Cloud Registration Based on Supervoxel Correspondence</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>7362</spage><epage>7372</epage><pages>7362-7372</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the development of RGBD sensors, the high-quality color point cloud can be obtained expediently. In this paper, we propose a novel registration method for 3D color point clouds from different views, which is a critical issue in many applications. Different from traditional feature-based methods, we design a hybrid feature representation with color moments of the point, which could be applied naturally for any color point cloud. And these features are extracted from point clouds based on the supervoxel segmentation. By jointly conducting these features for similarity measure, a weight parameter is dynamically adapted between the color and the spatial information. The registration algorithm is under a classic iterative framework for building the correspondence and estimating transformation parameters. In addition, we provide a mutual correspondence matching condition with hybrid features to build some more robust relationships for estimating transformation parameters. Experimental results demonstrate that our method can effectively reduce the number of point data for registration and achieve good matching results even in a poor initial condition.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2963987</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6806-6300</orcidid><orcidid>https://orcid.org/0000-0003-1766-827X</orcidid><orcidid>https://orcid.org/0000-0002-7092-0596</orcidid><orcidid>https://orcid.org/0000-0001-5679-2332</orcidid><orcidid>https://orcid.org/0000-0001-8687-4427</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.7362-7372
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2020_2963987
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Color
Color point cloud registration
Colored noise
Estimation
Feature extraction
hybrid feature
Image color analysis
Image segmentation
Matching
mutual correspondence matching
Object recognition
Parameter estimation
Registration
Shape
Spatial data
Three dimensional models
Three-dimensional displays
title Color Point Cloud Registration Based on Supervoxel Correspondence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Color%20Point%20Cloud%20Registration%20Based%20on%20Supervoxel%20Correspondence&rft.jtitle=IEEE%20access&rft.au=Yang,%20Yang&rft.date=2020&rft.volume=8&rft.spage=7362&rft.epage=7372&rft.pages=7362-7372&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2963987&rft_dat=%3Cproquest_cross%3E2454870240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454870240&rft_id=info:pmid/&rft_ieee_id=8950119&rft_doaj_id=oai_doaj_org_article_dbe014e87ac047d39155582e35e38747&rfr_iscdi=true