Color Point Cloud Registration Based on Supervoxel Correspondence
With the development of RGBD sensors, the high-quality color point cloud can be obtained expediently. In this paper, we propose a novel registration method for 3D color point clouds from different views, which is a critical issue in many applications. Different from traditional feature-based methods...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.7362-7372 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7372 |
---|---|
container_issue | |
container_start_page | 7362 |
container_title | IEEE access |
container_volume | 8 |
creator | Yang, Yang Chen, Weile Wang, Muyi Zhong, Dexing Du, Shaoyi |
description | With the development of RGBD sensors, the high-quality color point cloud can be obtained expediently. In this paper, we propose a novel registration method for 3D color point clouds from different views, which is a critical issue in many applications. Different from traditional feature-based methods, we design a hybrid feature representation with color moments of the point, which could be applied naturally for any color point cloud. And these features are extracted from point clouds based on the supervoxel segmentation. By jointly conducting these features for similarity measure, a weight parameter is dynamically adapted between the color and the spatial information. The registration algorithm is under a classic iterative framework for building the correspondence and estimating transformation parameters. In addition, we provide a mutual correspondence matching condition with hybrid features to build some more robust relationships for estimating transformation parameters. Experimental results demonstrate that our method can effectively reduce the number of point data for registration and achieve good matching results even in a poor initial condition. |
doi_str_mv | 10.1109/ACCESS.2020.2963987 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2020_2963987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8950119</ieee_id><doaj_id>oai_doaj_org_article_dbe014e87ac047d39155582e35e38747</doaj_id><sourcerecordid>2454870240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-49c99d02555ef057e8a7aaf21d839ee0a32004d304e91f4b152df7124f30116d3</originalsourceid><addsrcrecordid>eNpNUE1LAzEQXUTBUvsLelnw3Dr5apJjXaoWCorVc0g3s2XLuqnJVvTfm7qlOJd5DO-9mXlZNiYwJQT03bwoFuv1lAKFKdUzppW8yAaUzPSECTa7_Ievs1GMO0il0kjIQTYvfOND_uLrtsuLxh9c_orbOnbBdrVv83sb0eUJrA97DF_-G5u88CFg3PvWYVviTXZV2Sbi6NSH2fvD4q14mqyeH5fFfDUpOahuwnWptQMqhMAKhERlpbUVJU4xjQiWUQDuGHDUpOIbIqirJKG8YkDIzLFhtux9nbc7sw_1hw0_xtva_A182Boburps0LgNAuGopC2BS8c0SVsVRSaQKcll8rrtvfbBfx4wdmbnD6FN5xvKBVcSKIfEYj2rDD7GgNV5KwFzjN700Ztj9OYUfVKNe1WNiGeF0iK9odkv53N9Zg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454870240</pqid></control><display><type>article</type><title>Color Point Cloud Registration Based on Supervoxel Correspondence</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Yang ; Chen, Weile ; Wang, Muyi ; Zhong, Dexing ; Du, Shaoyi</creator><creatorcontrib>Yang, Yang ; Chen, Weile ; Wang, Muyi ; Zhong, Dexing ; Du, Shaoyi</creatorcontrib><description>With the development of RGBD sensors, the high-quality color point cloud can be obtained expediently. In this paper, we propose a novel registration method for 3D color point clouds from different views, which is a critical issue in many applications. Different from traditional feature-based methods, we design a hybrid feature representation with color moments of the point, which could be applied naturally for any color point cloud. And these features are extracted from point clouds based on the supervoxel segmentation. By jointly conducting these features for similarity measure, a weight parameter is dynamically adapted between the color and the spatial information. The registration algorithm is under a classic iterative framework for building the correspondence and estimating transformation parameters. In addition, we provide a mutual correspondence matching condition with hybrid features to build some more robust relationships for estimating transformation parameters. Experimental results demonstrate that our method can effectively reduce the number of point data for registration and achieve good matching results even in a poor initial condition.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2963987</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Color ; Color point cloud registration ; Colored noise ; Estimation ; Feature extraction ; hybrid feature ; Image color analysis ; Image segmentation ; Matching ; mutual correspondence matching ; Object recognition ; Parameter estimation ; Registration ; Shape ; Spatial data ; Three dimensional models ; Three-dimensional displays</subject><ispartof>IEEE access, 2020, Vol.8, p.7362-7372</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-49c99d02555ef057e8a7aaf21d839ee0a32004d304e91f4b152df7124f30116d3</citedby><cites>FETCH-LOGICAL-c408t-49c99d02555ef057e8a7aaf21d839ee0a32004d304e91f4b152df7124f30116d3</cites><orcidid>0000-0002-6806-6300 ; 0000-0003-1766-827X ; 0000-0002-7092-0596 ; 0000-0001-5679-2332 ; 0000-0001-8687-4427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8950119$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Chen, Weile</creatorcontrib><creatorcontrib>Wang, Muyi</creatorcontrib><creatorcontrib>Zhong, Dexing</creatorcontrib><creatorcontrib>Du, Shaoyi</creatorcontrib><title>Color Point Cloud Registration Based on Supervoxel Correspondence</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the development of RGBD sensors, the high-quality color point cloud can be obtained expediently. In this paper, we propose a novel registration method for 3D color point clouds from different views, which is a critical issue in many applications. Different from traditional feature-based methods, we design a hybrid feature representation with color moments of the point, which could be applied naturally for any color point cloud. And these features are extracted from point clouds based on the supervoxel segmentation. By jointly conducting these features for similarity measure, a weight parameter is dynamically adapted between the color and the spatial information. The registration algorithm is under a classic iterative framework for building the correspondence and estimating transformation parameters. In addition, we provide a mutual correspondence matching condition with hybrid features to build some more robust relationships for estimating transformation parameters. Experimental results demonstrate that our method can effectively reduce the number of point data for registration and achieve good matching results even in a poor initial condition.</description><subject>Algorithms</subject><subject>Color</subject><subject>Color point cloud registration</subject><subject>Colored noise</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>hybrid feature</subject><subject>Image color analysis</subject><subject>Image segmentation</subject><subject>Matching</subject><subject>mutual correspondence matching</subject><subject>Object recognition</subject><subject>Parameter estimation</subject><subject>Registration</subject><subject>Shape</subject><subject>Spatial data</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQXUTBUvsLelnw3Dr5apJjXaoWCorVc0g3s2XLuqnJVvTfm7qlOJd5DO-9mXlZNiYwJQT03bwoFuv1lAKFKdUzppW8yAaUzPSECTa7_Ievs1GMO0il0kjIQTYvfOND_uLrtsuLxh9c_orbOnbBdrVv83sb0eUJrA97DF_-G5u88CFg3PvWYVviTXZV2Sbi6NSH2fvD4q14mqyeH5fFfDUpOahuwnWptQMqhMAKhERlpbUVJU4xjQiWUQDuGHDUpOIbIqirJKG8YkDIzLFhtux9nbc7sw_1hw0_xtva_A182Boburps0LgNAuGopC2BS8c0SVsVRSaQKcll8rrtvfbBfx4wdmbnD6FN5xvKBVcSKIfEYj2rDD7GgNV5KwFzjN700Ztj9OYUfVKNe1WNiGeF0iK9odkv53N9Zg</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Yang, Yang</creator><creator>Chen, Weile</creator><creator>Wang, Muyi</creator><creator>Zhong, Dexing</creator><creator>Du, Shaoyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6806-6300</orcidid><orcidid>https://orcid.org/0000-0003-1766-827X</orcidid><orcidid>https://orcid.org/0000-0002-7092-0596</orcidid><orcidid>https://orcid.org/0000-0001-5679-2332</orcidid><orcidid>https://orcid.org/0000-0001-8687-4427</orcidid></search><sort><creationdate>2020</creationdate><title>Color Point Cloud Registration Based on Supervoxel Correspondence</title><author>Yang, Yang ; Chen, Weile ; Wang, Muyi ; Zhong, Dexing ; Du, Shaoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-49c99d02555ef057e8a7aaf21d839ee0a32004d304e91f4b152df7124f30116d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Color</topic><topic>Color point cloud registration</topic><topic>Colored noise</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>hybrid feature</topic><topic>Image color analysis</topic><topic>Image segmentation</topic><topic>Matching</topic><topic>mutual correspondence matching</topic><topic>Object recognition</topic><topic>Parameter estimation</topic><topic>Registration</topic><topic>Shape</topic><topic>Spatial data</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Chen, Weile</creatorcontrib><creatorcontrib>Wang, Muyi</creatorcontrib><creatorcontrib>Zhong, Dexing</creatorcontrib><creatorcontrib>Du, Shaoyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yang</au><au>Chen, Weile</au><au>Wang, Muyi</au><au>Zhong, Dexing</au><au>Du, Shaoyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Color Point Cloud Registration Based on Supervoxel Correspondence</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>7362</spage><epage>7372</epage><pages>7362-7372</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the development of RGBD sensors, the high-quality color point cloud can be obtained expediently. In this paper, we propose a novel registration method for 3D color point clouds from different views, which is a critical issue in many applications. Different from traditional feature-based methods, we design a hybrid feature representation with color moments of the point, which could be applied naturally for any color point cloud. And these features are extracted from point clouds based on the supervoxel segmentation. By jointly conducting these features for similarity measure, a weight parameter is dynamically adapted between the color and the spatial information. The registration algorithm is under a classic iterative framework for building the correspondence and estimating transformation parameters. In addition, we provide a mutual correspondence matching condition with hybrid features to build some more robust relationships for estimating transformation parameters. Experimental results demonstrate that our method can effectively reduce the number of point data for registration and achieve good matching results even in a poor initial condition.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2963987</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6806-6300</orcidid><orcidid>https://orcid.org/0000-0003-1766-827X</orcidid><orcidid>https://orcid.org/0000-0002-7092-0596</orcidid><orcidid>https://orcid.org/0000-0001-5679-2332</orcidid><orcidid>https://orcid.org/0000-0001-8687-4427</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.7362-7372 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2020_2963987 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Color Color point cloud registration Colored noise Estimation Feature extraction hybrid feature Image color analysis Image segmentation Matching mutual correspondence matching Object recognition Parameter estimation Registration Shape Spatial data Three dimensional models Three-dimensional displays |
title | Color Point Cloud Registration Based on Supervoxel Correspondence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Color%20Point%20Cloud%20Registration%20Based%20on%20Supervoxel%20Correspondence&rft.jtitle=IEEE%20access&rft.au=Yang,%20Yang&rft.date=2020&rft.volume=8&rft.spage=7362&rft.epage=7372&rft.pages=7362-7372&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2963987&rft_dat=%3Cproquest_cross%3E2454870240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454870240&rft_id=info:pmid/&rft_ieee_id=8950119&rft_doaj_id=oai_doaj_org_article_dbe014e87ac047d39155582e35e38747&rfr_iscdi=true |