An Adaptive Kalman Filtering Approach to Sensing and Predicting Air Quality Index Values

In recent years, Air Quality Index (AQI) have been widely used to describe the severity of haze and other air pollutions yet suffers from inefficiency and compatibility on real-time perception and prediction. In this paper, an Auto-Regressive (AR) prediction model based on sensed AQI values is propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.4265-4272
Hauptverfasser: Chen, Jibo, Chen, Keyao, Ding, Chen, Wang, Guizhi, Liu, Qi, Liu, Xiaodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4272
container_issue
container_start_page 4265
container_title IEEE access
container_volume 8
creator Chen, Jibo
Chen, Keyao
Ding, Chen
Wang, Guizhi
Liu, Qi
Liu, Xiaodong
description In recent years, Air Quality Index (AQI) have been widely used to describe the severity of haze and other air pollutions yet suffers from inefficiency and compatibility on real-time perception and prediction. In this paper, an Auto-Regressive (AR) prediction model based on sensed AQI values is proposed, where an adaptive Kalman Filtering (KF) approach is fitted to achieve efficient prediction of the AQI values. The AQI values were collected monthly from January 2018 to March 2019 using a WSN-based network, whereas daily AQI values started to be collected from October 1, 2018 to March 31, 2019. These data have been used for creation and evaluation purposes on the prediction model. According to the results, predicted values have shown high accuracy compared with the actual sensed values. In addition, when monthly AQI values were used, it has depicted higher accuracy compared to the daily ones depending on the experimental results. Therefore, the hybrid AR-KF model is accurate and effective in predicting haze weather, which has practical significance and potential value.
doi_str_mv 10.1109/ACCESS.2019.2963416
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2963416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8947921</ieee_id><doaj_id>oai_doaj_org_article_d7b0613ccbe04ee9900014994d39fe03</doaj_id><sourcerecordid>2454870783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d0718d3a8859c051ed2b5827fd24589b5d68d2efd8b5f1d7b6201835577afa593</originalsourceid><addsrcrecordid>eNqNkc1u3CAUha2qlRqleYJskLqsZgoGDCwtK2lHidRG00TdIQzXKSMHpphJm7cPjqO0y7ABHZ3v_nCq6pTgNSFYfW677my7XdeYqHWtGspI86Y6qkmjVpTT5u1_7_fVyTTtcDmySFwcVT_bgFpn9tnfA7ow450J6NyPGZIPt6jd71M09hfKEW0hTLNmgkPfEzhv85PFJ3R1MKPPD2gTHPxFN2Y8wPShejeYcYKT5_u4uj4_-9F9XV1--7Lp2suVZVjmlcOCSEeNlFxZzAm4uueyFoOrGZeq566RrobByZ4PxIm-KXtKyrkQZjBc0eNqs9R10ez0Pvk7kx50NF4_CTHdapOytyPoQuOGUGt7wAxAqfIPhCnFHFUDYFpqfVxqla1_lx2y3sVDCmV8XaZhUmAhZxddXDbFaUowvHQlWM-J6CURPSeinxMp1KeF-gN9HCbrIVh4IcsknHElMZvDIcUtX-_ufDbZx9DFQ8gFPV1QD_APkYoJVRP6CFqZpiA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454870783</pqid></control><display><type>article</type><title>An Adaptive Kalman Filtering Approach to Sensing and Predicting Air Quality Index Values</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Chen, Jibo ; Chen, Keyao ; Ding, Chen ; Wang, Guizhi ; Liu, Qi ; Liu, Xiaodong</creator><creatorcontrib>Chen, Jibo ; Chen, Keyao ; Ding, Chen ; Wang, Guizhi ; Liu, Qi ; Liu, Xiaodong</creatorcontrib><description>In recent years, Air Quality Index (AQI) have been widely used to describe the severity of haze and other air pollutions yet suffers from inefficiency and compatibility on real-time perception and prediction. In this paper, an Auto-Regressive (AR) prediction model based on sensed AQI values is proposed, where an adaptive Kalman Filtering (KF) approach is fitted to achieve efficient prediction of the AQI values. The AQI values were collected monthly from January 2018 to March 2019 using a WSN-based network, whereas daily AQI values started to be collected from October 1, 2018 to March 31, 2019. These data have been used for creation and evaluation purposes on the prediction model. According to the results, predicted values have shown high accuracy compared with the actual sensed values. In addition, when monthly AQI values were used, it has depicted higher accuracy compared to the daily ones depending on the experimental results. Therefore, the hybrid AR-KF model is accurate and effective in predicting haze weather, which has practical significance and potential value.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2963416</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Adaptation models ; Adaptive filters ; Air quality ; air quality index ; Atmospheric modeling ; Autoregressive models ; Computer Science ; Computer Science, Information Systems ; Engineering ; Engineering, Electrical &amp; Electronic ; Forecasting ; Haze ; Kalman filter ; Kalman filters ; Mathematical model ; Outdoor air quality ; Prediction models ; Predictions ; Predictive models ; Real-time sensing and predicting ; Science &amp; Technology ; simulation ; Technology ; Telecommunications ; Weather ; Wireless sensor networks</subject><ispartof>IEEE access, 2020, Vol.8, p.4265-4272</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000545980400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c408t-d0718d3a8859c051ed2b5827fd24589b5d68d2efd8b5f1d7b6201835577afa593</citedby><cites>FETCH-LOGICAL-c408t-d0718d3a8859c051ed2b5827fd24589b5d68d2efd8b5f1d7b6201835577afa593</cites><orcidid>0000-0003-3781-6946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8947921$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,4025,27638,27928,27929,27930,28253,54938</link.rule.ids></links><search><creatorcontrib>Chen, Jibo</creatorcontrib><creatorcontrib>Chen, Keyao</creatorcontrib><creatorcontrib>Ding, Chen</creatorcontrib><creatorcontrib>Wang, Guizhi</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Liu, Xiaodong</creatorcontrib><title>An Adaptive Kalman Filtering Approach to Sensing and Predicting Air Quality Index Values</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>In recent years, Air Quality Index (AQI) have been widely used to describe the severity of haze and other air pollutions yet suffers from inefficiency and compatibility on real-time perception and prediction. In this paper, an Auto-Regressive (AR) prediction model based on sensed AQI values is proposed, where an adaptive Kalman Filtering (KF) approach is fitted to achieve efficient prediction of the AQI values. The AQI values were collected monthly from January 2018 to March 2019 using a WSN-based network, whereas daily AQI values started to be collected from October 1, 2018 to March 31, 2019. These data have been used for creation and evaluation purposes on the prediction model. According to the results, predicted values have shown high accuracy compared with the actual sensed values. In addition, when monthly AQI values were used, it has depicted higher accuracy compared to the daily ones depending on the experimental results. Therefore, the hybrid AR-KF model is accurate and effective in predicting haze weather, which has practical significance and potential value.</description><subject>Adaptation models</subject><subject>Adaptive filters</subject><subject>Air quality</subject><subject>air quality index</subject><subject>Atmospheric modeling</subject><subject>Autoregressive models</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Forecasting</subject><subject>Haze</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>Outdoor air quality</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Real-time sensing and predicting</subject><subject>Science &amp; Technology</subject><subject>simulation</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Weather</subject><subject>Wireless sensor networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkc1u3CAUha2qlRqleYJskLqsZgoGDCwtK2lHidRG00TdIQzXKSMHpphJm7cPjqO0y7ABHZ3v_nCq6pTgNSFYfW677my7XdeYqHWtGspI86Y6qkmjVpTT5u1_7_fVyTTtcDmySFwcVT_bgFpn9tnfA7ow450J6NyPGZIPt6jd71M09hfKEW0hTLNmgkPfEzhv85PFJ3R1MKPPD2gTHPxFN2Y8wPShejeYcYKT5_u4uj4_-9F9XV1--7Lp2suVZVjmlcOCSEeNlFxZzAm4uueyFoOrGZeq566RrobByZ4PxIm-KXtKyrkQZjBc0eNqs9R10ez0Pvk7kx50NF4_CTHdapOytyPoQuOGUGt7wAxAqfIPhCnFHFUDYFpqfVxqla1_lx2y3sVDCmV8XaZhUmAhZxddXDbFaUowvHQlWM-J6CURPSeinxMp1KeF-gN9HCbrIVh4IcsknHElMZvDIcUtX-_ufDbZx9DFQ8gFPV1QD_APkYoJVRP6CFqZpiA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Chen, Jibo</creator><creator>Chen, Keyao</creator><creator>Ding, Chen</creator><creator>Wang, Guizhi</creator><creator>Liu, Qi</creator><creator>Liu, Xiaodong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3781-6946</orcidid></search><sort><creationdate>2020</creationdate><title>An Adaptive Kalman Filtering Approach to Sensing and Predicting Air Quality Index Values</title><author>Chen, Jibo ; Chen, Keyao ; Ding, Chen ; Wang, Guizhi ; Liu, Qi ; Liu, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d0718d3a8859c051ed2b5827fd24589b5d68d2efd8b5f1d7b6201835577afa593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>Adaptive filters</topic><topic>Air quality</topic><topic>air quality index</topic><topic>Atmospheric modeling</topic><topic>Autoregressive models</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Forecasting</topic><topic>Haze</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>Outdoor air quality</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Real-time sensing and predicting</topic><topic>Science &amp; Technology</topic><topic>simulation</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Weather</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jibo</creatorcontrib><creatorcontrib>Chen, Keyao</creatorcontrib><creatorcontrib>Ding, Chen</creatorcontrib><creatorcontrib>Wang, Guizhi</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Liu, Xiaodong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jibo</au><au>Chen, Keyao</au><au>Ding, Chen</au><au>Wang, Guizhi</au><au>Liu, Qi</au><au>Liu, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Kalman Filtering Approach to Sensing and Predicting Air Quality Index Values</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>4265</spage><epage>4272</epage><pages>4265-4272</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In recent years, Air Quality Index (AQI) have been widely used to describe the severity of haze and other air pollutions yet suffers from inefficiency and compatibility on real-time perception and prediction. In this paper, an Auto-Regressive (AR) prediction model based on sensed AQI values is proposed, where an adaptive Kalman Filtering (KF) approach is fitted to achieve efficient prediction of the AQI values. The AQI values were collected monthly from January 2018 to March 2019 using a WSN-based network, whereas daily AQI values started to be collected from October 1, 2018 to March 31, 2019. These data have been used for creation and evaluation purposes on the prediction model. According to the results, predicted values have shown high accuracy compared with the actual sensed values. In addition, when monthly AQI values were used, it has depicted higher accuracy compared to the daily ones depending on the experimental results. Therefore, the hybrid AR-KF model is accurate and effective in predicting haze weather, which has practical significance and potential value.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2963416</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3781-6946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.4265-4272
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2963416
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Adaptation models
Adaptive filters
Air quality
air quality index
Atmospheric modeling
Autoregressive models
Computer Science
Computer Science, Information Systems
Engineering
Engineering, Electrical & Electronic
Forecasting
Haze
Kalman filter
Kalman filters
Mathematical model
Outdoor air quality
Prediction models
Predictions
Predictive models
Real-time sensing and predicting
Science & Technology
simulation
Technology
Telecommunications
Weather
Wireless sensor networks
title An Adaptive Kalman Filtering Approach to Sensing and Predicting Air Quality Index Values
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A29%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Kalman%20Filtering%20Approach%20to%20Sensing%20and%20Predicting%20Air%20Quality%20Index%20Values&rft.jtitle=IEEE%20access&rft.au=Chen,%20Jibo&rft.date=2020&rft.volume=8&rft.spage=4265&rft.epage=4272&rft.pages=4265-4272&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2963416&rft_dat=%3Cproquest_cross%3E2454870783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454870783&rft_id=info:pmid/&rft_ieee_id=8947921&rft_doaj_id=oai_doaj_org_article_d7b0613ccbe04ee9900014994d39fe03&rfr_iscdi=true