Fusion of Hyperspectral and Multispectral Images With Sparse and Proximal Regularization
Fusion of hyperspectral and multispectral imagery data is utilized to reconstruct a super-resolution image with high spectral and spatial resolution, which plays a significant role in remote sensing image processing. Conversely, hyperspectral and multispectral data can be modeled as two low-dimensio...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.186352-186363 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 186363 |
---|---|
container_issue | |
container_start_page | 186352 |
container_title | IEEE access |
container_volume | 7 |
creator | Yang, Feixia Ping, Ziliang Ma, Fei Wang, Yanwei |
description | Fusion of hyperspectral and multispectral imagery data is utilized to reconstruct a super-resolution image with high spectral and spatial resolution, which plays a significant role in remote sensing image processing. Conversely, hyperspectral and multispectral data can be modeled as two low-dimensional subspaces by respectively spatially and spectrally degrading the desired image. A representative method is called coupled non-negative matrix factorization (CNMF) based on a Gaussian observation model, but it is an ill-posed inverse problem. In addition, from the perspective of matrix factorization, the matrixing process of hyperspectral and multispectral cube data generally results in the loss of structural information and performance degradation. To address these issues, this article proposes a proximal minimum-volume expression to regularize the convex simplex, enclosing all reconstructed image pixels instead of low-dimensional subspace data. Then, we incorporate sparse and proximal regularizers into the original CNMF to reformulate the fusion problem as a dynamical system via proximal alternating optimization. Finally, the alternating direction method of multipliers is adopted to split the variables for the closed-form solutions that are further reduced in computational complexity. The experimental results show that the proposed algorithm in this paper performs better than the state-of-the-art fusion methods in most cases, which verifies the effectiveness and efficiency of this proposed algorithm in yielding high-fidelity reconstructed images. |
doi_str_mv | 10.1109/ACCESS.2019.2961240 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2961240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8937525</ieee_id><doaj_id>oai_doaj_org_article_0803a6b9557847068494f6d3042d3fad</doaj_id><sourcerecordid>2455633804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8e1b73c27675b4fc47235d690199aa042fe3a7a2c56e4b68f4ce2e6afe5b76d63</originalsourceid><addsrcrecordid>eNpNUU1LxDAQLaKg6P6CvRQ875rmO0dZ_FhQFFfRW5i2k7VL3dSkBfXXG60sziXDy3tvZnhZNi3IvCiIOTtfLC5WqzklhZlTIwvKyV52RAtpZkwwuf-vP8wmMW5IKp0goY6yl8shNn6be5dff3YYYodVH6DNYVvnt0PbNztk-QZrjPlz07_mqw5CxF_SffAfzVv6f8D10EJovqBPjifZgYM24uTvPc6eLi8eF9ezm7ur5eL8ZlZxovuZxqJUrKJKKlFyV3FFmailSccYAMKpQwYKaCUk8lJqxyukKMGhKJWsJTvOlqNv7WFju5BWCZ_WQ2N_AR_WFkLfVC1aogkDWRohlOaKSM0Nd7JmaUrNHNTJ63T06oJ_HzD2duOHsE3rW8qFkIxpwhOLjawq-BgDut3UgtifROyYiP1JxP4lklTTUdUg4k6hDVOCCvYNivqGyA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455633804</pqid></control><display><type>article</type><title>Fusion of Hyperspectral and Multispectral Images With Sparse and Proximal Regularization</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Yang, Feixia ; Ping, Ziliang ; Ma, Fei ; Wang, Yanwei</creator><creatorcontrib>Yang, Feixia ; Ping, Ziliang ; Ma, Fei ; Wang, Yanwei</creatorcontrib><description>Fusion of hyperspectral and multispectral imagery data is utilized to reconstruct a super-resolution image with high spectral and spatial resolution, which plays a significant role in remote sensing image processing. Conversely, hyperspectral and multispectral data can be modeled as two low-dimensional subspaces by respectively spatially and spectrally degrading the desired image. A representative method is called coupled non-negative matrix factorization (CNMF) based on a Gaussian observation model, but it is an ill-posed inverse problem. In addition, from the perspective of matrix factorization, the matrixing process of hyperspectral and multispectral cube data generally results in the loss of structural information and performance degradation. To address these issues, this article proposes a proximal minimum-volume expression to regularize the convex simplex, enclosing all reconstructed image pixels instead of low-dimensional subspace data. Then, we incorporate sparse and proximal regularizers into the original CNMF to reformulate the fusion problem as a dynamical system via proximal alternating optimization. Finally, the alternating direction method of multipliers is adopted to split the variables for the closed-form solutions that are further reduced in computational complexity. The experimental results show that the proposed algorithm in this paper performs better than the state-of-the-art fusion methods in most cases, which verifies the effectiveness and efficiency of this proposed algorithm in yielding high-fidelity reconstructed images.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2961240</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; alternating optimization ; coupled non-negative matrix factorization ; data fusion ; Data integration ; Factorization ; Hyperspectral imaging ; Image processing ; Image reconstruction ; Image resolution ; Inverse problems ; Matrix decomposition ; minimum volume ; Optimization ; Performance degradation ; Proximal regularization ; Regularization ; Remote sensing ; Spatial resolution ; Subspaces ; Tensors</subject><ispartof>IEEE access, 2019, Vol.7, p.186352-186363</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8e1b73c27675b4fc47235d690199aa042fe3a7a2c56e4b68f4ce2e6afe5b76d63</citedby><cites>FETCH-LOGICAL-c408t-8e1b73c27675b4fc47235d690199aa042fe3a7a2c56e4b68f4ce2e6afe5b76d63</cites><orcidid>0000-0001-9400-7833 ; 0000-0002-0184-3179 ; 0000-0001-9511-5772 ; 0000-0003-1280-034X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8937525$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Yang, Feixia</creatorcontrib><creatorcontrib>Ping, Ziliang</creatorcontrib><creatorcontrib>Ma, Fei</creatorcontrib><creatorcontrib>Wang, Yanwei</creatorcontrib><title>Fusion of Hyperspectral and Multispectral Images With Sparse and Proximal Regularization</title><title>IEEE access</title><addtitle>Access</addtitle><description>Fusion of hyperspectral and multispectral imagery data is utilized to reconstruct a super-resolution image with high spectral and spatial resolution, which plays a significant role in remote sensing image processing. Conversely, hyperspectral and multispectral data can be modeled as two low-dimensional subspaces by respectively spatially and spectrally degrading the desired image. A representative method is called coupled non-negative matrix factorization (CNMF) based on a Gaussian observation model, but it is an ill-posed inverse problem. In addition, from the perspective of matrix factorization, the matrixing process of hyperspectral and multispectral cube data generally results in the loss of structural information and performance degradation. To address these issues, this article proposes a proximal minimum-volume expression to regularize the convex simplex, enclosing all reconstructed image pixels instead of low-dimensional subspace data. Then, we incorporate sparse and proximal regularizers into the original CNMF to reformulate the fusion problem as a dynamical system via proximal alternating optimization. Finally, the alternating direction method of multipliers is adopted to split the variables for the closed-form solutions that are further reduced in computational complexity. The experimental results show that the proposed algorithm in this paper performs better than the state-of-the-art fusion methods in most cases, which verifies the effectiveness and efficiency of this proposed algorithm in yielding high-fidelity reconstructed images.</description><subject>Algorithms</subject><subject>alternating optimization</subject><subject>coupled non-negative matrix factorization</subject><subject>data fusion</subject><subject>Data integration</subject><subject>Factorization</subject><subject>Hyperspectral imaging</subject><subject>Image processing</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Inverse problems</subject><subject>Matrix decomposition</subject><subject>minimum volume</subject><subject>Optimization</subject><subject>Performance degradation</subject><subject>Proximal regularization</subject><subject>Regularization</subject><subject>Remote sensing</subject><subject>Spatial resolution</subject><subject>Subspaces</subject><subject>Tensors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LxDAQLaKg6P6CvRQ875rmO0dZ_FhQFFfRW5i2k7VL3dSkBfXXG60sziXDy3tvZnhZNi3IvCiIOTtfLC5WqzklhZlTIwvKyV52RAtpZkwwuf-vP8wmMW5IKp0goY6yl8shNn6be5dff3YYYodVH6DNYVvnt0PbNztk-QZrjPlz07_mqw5CxF_SffAfzVv6f8D10EJovqBPjifZgYM24uTvPc6eLi8eF9ezm7ur5eL8ZlZxovuZxqJUrKJKKlFyV3FFmailSccYAMKpQwYKaCUk8lJqxyukKMGhKJWsJTvOlqNv7WFju5BWCZ_WQ2N_AR_WFkLfVC1aogkDWRohlOaKSM0Nd7JmaUrNHNTJ63T06oJ_HzD2duOHsE3rW8qFkIxpwhOLjawq-BgDut3UgtifROyYiP1JxP4lklTTUdUg4k6hDVOCCvYNivqGyA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Yang, Feixia</creator><creator>Ping, Ziliang</creator><creator>Ma, Fei</creator><creator>Wang, Yanwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9400-7833</orcidid><orcidid>https://orcid.org/0000-0002-0184-3179</orcidid><orcidid>https://orcid.org/0000-0001-9511-5772</orcidid><orcidid>https://orcid.org/0000-0003-1280-034X</orcidid></search><sort><creationdate>2019</creationdate><title>Fusion of Hyperspectral and Multispectral Images With Sparse and Proximal Regularization</title><author>Yang, Feixia ; Ping, Ziliang ; Ma, Fei ; Wang, Yanwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8e1b73c27675b4fc47235d690199aa042fe3a7a2c56e4b68f4ce2e6afe5b76d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>alternating optimization</topic><topic>coupled non-negative matrix factorization</topic><topic>data fusion</topic><topic>Data integration</topic><topic>Factorization</topic><topic>Hyperspectral imaging</topic><topic>Image processing</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Inverse problems</topic><topic>Matrix decomposition</topic><topic>minimum volume</topic><topic>Optimization</topic><topic>Performance degradation</topic><topic>Proximal regularization</topic><topic>Regularization</topic><topic>Remote sensing</topic><topic>Spatial resolution</topic><topic>Subspaces</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Feixia</creatorcontrib><creatorcontrib>Ping, Ziliang</creatorcontrib><creatorcontrib>Ma, Fei</creatorcontrib><creatorcontrib>Wang, Yanwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Feixia</au><au>Ping, Ziliang</au><au>Ma, Fei</au><au>Wang, Yanwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion of Hyperspectral and Multispectral Images With Sparse and Proximal Regularization</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>186352</spage><epage>186363</epage><pages>186352-186363</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Fusion of hyperspectral and multispectral imagery data is utilized to reconstruct a super-resolution image with high spectral and spatial resolution, which plays a significant role in remote sensing image processing. Conversely, hyperspectral and multispectral data can be modeled as two low-dimensional subspaces by respectively spatially and spectrally degrading the desired image. A representative method is called coupled non-negative matrix factorization (CNMF) based on a Gaussian observation model, but it is an ill-posed inverse problem. In addition, from the perspective of matrix factorization, the matrixing process of hyperspectral and multispectral cube data generally results in the loss of structural information and performance degradation. To address these issues, this article proposes a proximal minimum-volume expression to regularize the convex simplex, enclosing all reconstructed image pixels instead of low-dimensional subspace data. Then, we incorporate sparse and proximal regularizers into the original CNMF to reformulate the fusion problem as a dynamical system via proximal alternating optimization. Finally, the alternating direction method of multipliers is adopted to split the variables for the closed-form solutions that are further reduced in computational complexity. The experimental results show that the proposed algorithm in this paper performs better than the state-of-the-art fusion methods in most cases, which verifies the effectiveness and efficiency of this proposed algorithm in yielding high-fidelity reconstructed images.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2961240</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9400-7833</orcidid><orcidid>https://orcid.org/0000-0002-0184-3179</orcidid><orcidid>https://orcid.org/0000-0001-9511-5772</orcidid><orcidid>https://orcid.org/0000-0003-1280-034X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.186352-186363 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2019_2961240 |
source | DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Algorithms alternating optimization coupled non-negative matrix factorization data fusion Data integration Factorization Hyperspectral imaging Image processing Image reconstruction Image resolution Inverse problems Matrix decomposition minimum volume Optimization Performance degradation Proximal regularization Regularization Remote sensing Spatial resolution Subspaces Tensors |
title | Fusion of Hyperspectral and Multispectral Images With Sparse and Proximal Regularization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion%20of%20Hyperspectral%20and%20Multispectral%20Images%20With%20Sparse%20and%20Proximal%20Regularization&rft.jtitle=IEEE%20access&rft.au=Yang,%20Feixia&rft.date=2019&rft.volume=7&rft.spage=186352&rft.epage=186363&rft.pages=186352-186363&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2961240&rft_dat=%3Cproquest_cross%3E2455633804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455633804&rft_id=info:pmid/&rft_ieee_id=8937525&rft_doaj_id=oai_doaj_org_article_0803a6b9557847068494f6d3042d3fad&rfr_iscdi=true |