A Novel Fitting H-Infinity Kalman Filter for Nonlinear Uncertain Discrete-Time Systems Based on Fitting Transformation
The classical Kalman-based filtering algorithm, such as extended Kalman filter or unscented Kalman filter, commonly assumes that the accurate system model or precise noise statistics is known for using. Hence, these filters are not robust estimation to practical systems and always with poor stabilit...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.10554-10568 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10568 |
---|---|
container_issue | |
container_start_page | 10554 |
container_title | IEEE access |
container_volume | 8 |
creator | Xia, Juan Gao, Shesheng Zhong, Yongmin Zhang, Jiahao Gu, Chengfan Liu, Yang |
description | The classical Kalman-based filtering algorithm, such as extended Kalman filter or unscented Kalman filter, commonly assumes that the accurate system model or precise noise statistics is known for using. Hence, these filters are not robust estimation to practical systems and always with poor stability, low precision or even divergence since uncertain items exist. In order to tackle these issues, a novel scheme referred to as the fitting H-infinity Kalman filter (FHKF) is proposed and used for robust estimation of the nonlinear uncertain systems. The hardcore of FHKF is the fitting transformation, which is a numerical approximation approach to get the estimation values of coefficient matrix based on least weighted squares. Moreover, FHKF is proposed by applying the coefficient matrix to the structure of the extended H-infinity Kalman filter. Based on the stochastic stability lemma, the stability analysis is presented to verify the error boundness of the proposed filtering. Its efficiency is demonstrated by taking Monte Carlo simulation for the uncertain system and practical experiments in the INS/GPS integrated navigation. |
doi_str_mv | 10.1109/ACCESS.2019.2960410 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2960410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8935212</ieee_id><doaj_id>oai_doaj_org_article_dc66e51b25064033b789378bb4d7ab5a</doaj_id><sourcerecordid>2454728798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d788108639c6f4cf3f447e52d0bd927633c7f2f27e52e7900d1638c312d66e43</originalsourceid><addsrcrecordid>eNpNkc1uGyEUhUdVKzVK8wTZIGU9Ln8DzNJxk8Zq1C7srhEDdyKsGUiBRPLbF2ciK2xAh3O-e6XTNNcErwjB_ff1ZnO3260oJv2K9gJzgj81F5SIvmUdE58_vL82VzkfcD2qSp28aF7X6Hd8hQnd-1J8eEIP7TaMPvhyRL_MNJtQf6YCCY0xVWuYfACT0N9gIRXjA_rhs01QoN37GdDumAvMGd2aDA7FcObukwm5MmZTfAzfmi-jmTJcvd-Xzf7-br95aB___Nxu1o-t5ViV1kmlCFaC9VaM3I5s5FxCRx0eXE-lYMzKkY70pIHsMXZEMGUZoU4I4Oyy2S5YF81BPyc_m3TU0Xj9JsT0pE0q3k6gna2Jjgy0w4JjxgapeibVMHAnzdCZyrpZWM8p_nuBXPQhvqRQt9eUd1xSJXtVXWxx2RRzTjCepxKsT3XppS59qku_11VT10vKA8A5URfoKKHsPx3akB8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454728798</pqid></control><display><type>article</type><title>A Novel Fitting H-Infinity Kalman Filter for Nonlinear Uncertain Discrete-Time Systems Based on Fitting Transformation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xia, Juan ; Gao, Shesheng ; Zhong, Yongmin ; Zhang, Jiahao ; Gu, Chengfan ; Liu, Yang</creator><creatorcontrib>Xia, Juan ; Gao, Shesheng ; Zhong, Yongmin ; Zhang, Jiahao ; Gu, Chengfan ; Liu, Yang</creatorcontrib><description>The classical Kalman-based filtering algorithm, such as extended Kalman filter or unscented Kalman filter, commonly assumes that the accurate system model or precise noise statistics is known for using. Hence, these filters are not robust estimation to practical systems and always with poor stability, low precision or even divergence since uncertain items exist. In order to tackle these issues, a novel scheme referred to as the fitting H-infinity Kalman filter (FHKF) is proposed and used for robust estimation of the nonlinear uncertain systems. The hardcore of FHKF is the fitting transformation, which is a numerical approximation approach to get the estimation values of coefficient matrix based on least weighted squares. Moreover, FHKF is proposed by applying the coefficient matrix to the structure of the extended H-infinity Kalman filter. Based on the stochastic stability lemma, the stability analysis is presented to verify the error boundness of the proposed filtering. Its efficiency is demonstrated by taking Monte Carlo simulation for the uncertain system and practical experiments in the INS/GPS integrated navigation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2960410</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Discrete time systems ; Estimation ; Extended Kalman filter ; Fitting ; fitting H-infinity Kalman filter ; Fitting transformation ; Global positioning systems ; GPS ; H infinity ; Kalman filters ; Mathematical analysis ; Monte Carlo simulation ; Nonlinear systems ; Robustness (mathematics) ; Satellite navigation systems ; Stability analysis ; uncertain system ; Uncertainty</subject><ispartof>IEEE access, 2020, Vol.8, p.10554-10568</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d788108639c6f4cf3f447e52d0bd927633c7f2f27e52e7900d1638c312d66e43</citedby><cites>FETCH-LOGICAL-c408t-d788108639c6f4cf3f447e52d0bd927633c7f2f27e52e7900d1638c312d66e43</cites><orcidid>0000-0002-0105-9296 ; 0000-0002-3510-0162 ; 0000-0002-7980-9085 ; 0000-0002-4308-2195 ; 0000-0001-9421-2415 ; 0000-0001-8391-5262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8935212$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4021,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Xia, Juan</creatorcontrib><creatorcontrib>Gao, Shesheng</creatorcontrib><creatorcontrib>Zhong, Yongmin</creatorcontrib><creatorcontrib>Zhang, Jiahao</creatorcontrib><creatorcontrib>Gu, Chengfan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><title>A Novel Fitting H-Infinity Kalman Filter for Nonlinear Uncertain Discrete-Time Systems Based on Fitting Transformation</title><title>IEEE access</title><addtitle>Access</addtitle><description>The classical Kalman-based filtering algorithm, such as extended Kalman filter or unscented Kalman filter, commonly assumes that the accurate system model or precise noise statistics is known for using. Hence, these filters are not robust estimation to practical systems and always with poor stability, low precision or even divergence since uncertain items exist. In order to tackle these issues, a novel scheme referred to as the fitting H-infinity Kalman filter (FHKF) is proposed and used for robust estimation of the nonlinear uncertain systems. The hardcore of FHKF is the fitting transformation, which is a numerical approximation approach to get the estimation values of coefficient matrix based on least weighted squares. Moreover, FHKF is proposed by applying the coefficient matrix to the structure of the extended H-infinity Kalman filter. Based on the stochastic stability lemma, the stability analysis is presented to verify the error boundness of the proposed filtering. Its efficiency is demonstrated by taking Monte Carlo simulation for the uncertain system and practical experiments in the INS/GPS integrated navigation.</description><subject>Algorithms</subject><subject>Discrete time systems</subject><subject>Estimation</subject><subject>Extended Kalman filter</subject><subject>Fitting</subject><subject>fitting H-infinity Kalman filter</subject><subject>Fitting transformation</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>H infinity</subject><subject>Kalman filters</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Nonlinear systems</subject><subject>Robustness (mathematics)</subject><subject>Satellite navigation systems</subject><subject>Stability analysis</subject><subject>uncertain system</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1uGyEUhUdVKzVK8wTZIGU9Ln8DzNJxk8Zq1C7srhEDdyKsGUiBRPLbF2ciK2xAh3O-e6XTNNcErwjB_ff1ZnO3260oJv2K9gJzgj81F5SIvmUdE58_vL82VzkfcD2qSp28aF7X6Hd8hQnd-1J8eEIP7TaMPvhyRL_MNJtQf6YCCY0xVWuYfACT0N9gIRXjA_rhs01QoN37GdDumAvMGd2aDA7FcObukwm5MmZTfAzfmi-jmTJcvd-Xzf7-br95aB___Nxu1o-t5ViV1kmlCFaC9VaM3I5s5FxCRx0eXE-lYMzKkY70pIHsMXZEMGUZoU4I4Oyy2S5YF81BPyc_m3TU0Xj9JsT0pE0q3k6gna2Jjgy0w4JjxgapeibVMHAnzdCZyrpZWM8p_nuBXPQhvqRQt9eUd1xSJXtVXWxx2RRzTjCepxKsT3XppS59qku_11VT10vKA8A5URfoKKHsPx3akB8</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xia, Juan</creator><creator>Gao, Shesheng</creator><creator>Zhong, Yongmin</creator><creator>Zhang, Jiahao</creator><creator>Gu, Chengfan</creator><creator>Liu, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0105-9296</orcidid><orcidid>https://orcid.org/0000-0002-3510-0162</orcidid><orcidid>https://orcid.org/0000-0002-7980-9085</orcidid><orcidid>https://orcid.org/0000-0002-4308-2195</orcidid><orcidid>https://orcid.org/0000-0001-9421-2415</orcidid><orcidid>https://orcid.org/0000-0001-8391-5262</orcidid></search><sort><creationdate>2020</creationdate><title>A Novel Fitting H-Infinity Kalman Filter for Nonlinear Uncertain Discrete-Time Systems Based on Fitting Transformation</title><author>Xia, Juan ; Gao, Shesheng ; Zhong, Yongmin ; Zhang, Jiahao ; Gu, Chengfan ; Liu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d788108639c6f4cf3f447e52d0bd927633c7f2f27e52e7900d1638c312d66e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Discrete time systems</topic><topic>Estimation</topic><topic>Extended Kalman filter</topic><topic>Fitting</topic><topic>fitting H-infinity Kalman filter</topic><topic>Fitting transformation</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>H infinity</topic><topic>Kalman filters</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Nonlinear systems</topic><topic>Robustness (mathematics)</topic><topic>Satellite navigation systems</topic><topic>Stability analysis</topic><topic>uncertain system</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Juan</creatorcontrib><creatorcontrib>Gao, Shesheng</creatorcontrib><creatorcontrib>Zhong, Yongmin</creatorcontrib><creatorcontrib>Zhang, Jiahao</creatorcontrib><creatorcontrib>Gu, Chengfan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Juan</au><au>Gao, Shesheng</au><au>Zhong, Yongmin</au><au>Zhang, Jiahao</au><au>Gu, Chengfan</au><au>Liu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Fitting H-Infinity Kalman Filter for Nonlinear Uncertain Discrete-Time Systems Based on Fitting Transformation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>10554</spage><epage>10568</epage><pages>10554-10568</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The classical Kalman-based filtering algorithm, such as extended Kalman filter or unscented Kalman filter, commonly assumes that the accurate system model or precise noise statistics is known for using. Hence, these filters are not robust estimation to practical systems and always with poor stability, low precision or even divergence since uncertain items exist. In order to tackle these issues, a novel scheme referred to as the fitting H-infinity Kalman filter (FHKF) is proposed and used for robust estimation of the nonlinear uncertain systems. The hardcore of FHKF is the fitting transformation, which is a numerical approximation approach to get the estimation values of coefficient matrix based on least weighted squares. Moreover, FHKF is proposed by applying the coefficient matrix to the structure of the extended H-infinity Kalman filter. Based on the stochastic stability lemma, the stability analysis is presented to verify the error boundness of the proposed filtering. Its efficiency is demonstrated by taking Monte Carlo simulation for the uncertain system and practical experiments in the INS/GPS integrated navigation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2960410</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0105-9296</orcidid><orcidid>https://orcid.org/0000-0002-3510-0162</orcidid><orcidid>https://orcid.org/0000-0002-7980-9085</orcidid><orcidid>https://orcid.org/0000-0002-4308-2195</orcidid><orcidid>https://orcid.org/0000-0001-9421-2415</orcidid><orcidid>https://orcid.org/0000-0001-8391-5262</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.10554-10568 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2019_2960410 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Discrete time systems Estimation Extended Kalman filter Fitting fitting H-infinity Kalman filter Fitting transformation Global positioning systems GPS H infinity Kalman filters Mathematical analysis Monte Carlo simulation Nonlinear systems Robustness (mathematics) Satellite navigation systems Stability analysis uncertain system Uncertainty |
title | A Novel Fitting H-Infinity Kalman Filter for Nonlinear Uncertain Discrete-Time Systems Based on Fitting Transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Fitting%20H-Infinity%20Kalman%20Filter%20for%20Nonlinear%20Uncertain%20Discrete-Time%20Systems%20Based%20on%20Fitting%20Transformation&rft.jtitle=IEEE%20access&rft.au=Xia,%20Juan&rft.date=2020&rft.volume=8&rft.spage=10554&rft.epage=10568&rft.pages=10554-10568&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2960410&rft_dat=%3Cproquest_cross%3E2454728798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454728798&rft_id=info:pmid/&rft_ieee_id=8935212&rft_doaj_id=oai_doaj_org_article_dc66e51b25064033b789378bb4d7ab5a&rfr_iscdi=true |