A Novel Fitting H-Infinity Kalman Filter for Nonlinear Uncertain Discrete-Time Systems Based on Fitting Transformation

The classical Kalman-based filtering algorithm, such as extended Kalman filter or unscented Kalman filter, commonly assumes that the accurate system model or precise noise statistics is known for using. Hence, these filters are not robust estimation to practical systems and always with poor stabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.10554-10568
Hauptverfasser: Xia, Juan, Gao, Shesheng, Zhong, Yongmin, Zhang, Jiahao, Gu, Chengfan, Liu, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10568
container_issue
container_start_page 10554
container_title IEEE access
container_volume 8
creator Xia, Juan
Gao, Shesheng
Zhong, Yongmin
Zhang, Jiahao
Gu, Chengfan
Liu, Yang
description The classical Kalman-based filtering algorithm, such as extended Kalman filter or unscented Kalman filter, commonly assumes that the accurate system model or precise noise statistics is known for using. Hence, these filters are not robust estimation to practical systems and always with poor stability, low precision or even divergence since uncertain items exist. In order to tackle these issues, a novel scheme referred to as the fitting H-infinity Kalman filter (FHKF) is proposed and used for robust estimation of the nonlinear uncertain systems. The hardcore of FHKF is the fitting transformation, which is a numerical approximation approach to get the estimation values of coefficient matrix based on least weighted squares. Moreover, FHKF is proposed by applying the coefficient matrix to the structure of the extended H-infinity Kalman filter. Based on the stochastic stability lemma, the stability analysis is presented to verify the error boundness of the proposed filtering. Its efficiency is demonstrated by taking Monte Carlo simulation for the uncertain system and practical experiments in the INS/GPS integrated navigation.
doi_str_mv 10.1109/ACCESS.2019.2960410
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2960410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8935212</ieee_id><doaj_id>oai_doaj_org_article_dc66e51b25064033b789378bb4d7ab5a</doaj_id><sourcerecordid>2454728798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d788108639c6f4cf3f447e52d0bd927633c7f2f27e52e7900d1638c312d66e43</originalsourceid><addsrcrecordid>eNpNkc1uGyEUhUdVKzVK8wTZIGU9Ln8DzNJxk8Zq1C7srhEDdyKsGUiBRPLbF2ciK2xAh3O-e6XTNNcErwjB_ff1ZnO3260oJv2K9gJzgj81F5SIvmUdE58_vL82VzkfcD2qSp28aF7X6Hd8hQnd-1J8eEIP7TaMPvhyRL_MNJtQf6YCCY0xVWuYfACT0N9gIRXjA_rhs01QoN37GdDumAvMGd2aDA7FcObukwm5MmZTfAzfmi-jmTJcvd-Xzf7-br95aB___Nxu1o-t5ViV1kmlCFaC9VaM3I5s5FxCRx0eXE-lYMzKkY70pIHsMXZEMGUZoU4I4Oyy2S5YF81BPyc_m3TU0Xj9JsT0pE0q3k6gna2Jjgy0w4JjxgapeibVMHAnzdCZyrpZWM8p_nuBXPQhvqRQt9eUd1xSJXtVXWxx2RRzTjCepxKsT3XppS59qku_11VT10vKA8A5URfoKKHsPx3akB8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454728798</pqid></control><display><type>article</type><title>A Novel Fitting H-Infinity Kalman Filter for Nonlinear Uncertain Discrete-Time Systems Based on Fitting Transformation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xia, Juan ; Gao, Shesheng ; Zhong, Yongmin ; Zhang, Jiahao ; Gu, Chengfan ; Liu, Yang</creator><creatorcontrib>Xia, Juan ; Gao, Shesheng ; Zhong, Yongmin ; Zhang, Jiahao ; Gu, Chengfan ; Liu, Yang</creatorcontrib><description>The classical Kalman-based filtering algorithm, such as extended Kalman filter or unscented Kalman filter, commonly assumes that the accurate system model or precise noise statistics is known for using. Hence, these filters are not robust estimation to practical systems and always with poor stability, low precision or even divergence since uncertain items exist. In order to tackle these issues, a novel scheme referred to as the fitting H-infinity Kalman filter (FHKF) is proposed and used for robust estimation of the nonlinear uncertain systems. The hardcore of FHKF is the fitting transformation, which is a numerical approximation approach to get the estimation values of coefficient matrix based on least weighted squares. Moreover, FHKF is proposed by applying the coefficient matrix to the structure of the extended H-infinity Kalman filter. Based on the stochastic stability lemma, the stability analysis is presented to verify the error boundness of the proposed filtering. Its efficiency is demonstrated by taking Monte Carlo simulation for the uncertain system and practical experiments in the INS/GPS integrated navigation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2960410</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Discrete time systems ; Estimation ; Extended Kalman filter ; Fitting ; fitting H-infinity Kalman filter ; Fitting transformation ; Global positioning systems ; GPS ; H infinity ; Kalman filters ; Mathematical analysis ; Monte Carlo simulation ; Nonlinear systems ; Robustness (mathematics) ; Satellite navigation systems ; Stability analysis ; uncertain system ; Uncertainty</subject><ispartof>IEEE access, 2020, Vol.8, p.10554-10568</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d788108639c6f4cf3f447e52d0bd927633c7f2f27e52e7900d1638c312d66e43</citedby><cites>FETCH-LOGICAL-c408t-d788108639c6f4cf3f447e52d0bd927633c7f2f27e52e7900d1638c312d66e43</cites><orcidid>0000-0002-0105-9296 ; 0000-0002-3510-0162 ; 0000-0002-7980-9085 ; 0000-0002-4308-2195 ; 0000-0001-9421-2415 ; 0000-0001-8391-5262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8935212$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4021,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Xia, Juan</creatorcontrib><creatorcontrib>Gao, Shesheng</creatorcontrib><creatorcontrib>Zhong, Yongmin</creatorcontrib><creatorcontrib>Zhang, Jiahao</creatorcontrib><creatorcontrib>Gu, Chengfan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><title>A Novel Fitting H-Infinity Kalman Filter for Nonlinear Uncertain Discrete-Time Systems Based on Fitting Transformation</title><title>IEEE access</title><addtitle>Access</addtitle><description>The classical Kalman-based filtering algorithm, such as extended Kalman filter or unscented Kalman filter, commonly assumes that the accurate system model or precise noise statistics is known for using. Hence, these filters are not robust estimation to practical systems and always with poor stability, low precision or even divergence since uncertain items exist. In order to tackle these issues, a novel scheme referred to as the fitting H-infinity Kalman filter (FHKF) is proposed and used for robust estimation of the nonlinear uncertain systems. The hardcore of FHKF is the fitting transformation, which is a numerical approximation approach to get the estimation values of coefficient matrix based on least weighted squares. Moreover, FHKF is proposed by applying the coefficient matrix to the structure of the extended H-infinity Kalman filter. Based on the stochastic stability lemma, the stability analysis is presented to verify the error boundness of the proposed filtering. Its efficiency is demonstrated by taking Monte Carlo simulation for the uncertain system and practical experiments in the INS/GPS integrated navigation.</description><subject>Algorithms</subject><subject>Discrete time systems</subject><subject>Estimation</subject><subject>Extended Kalman filter</subject><subject>Fitting</subject><subject>fitting H-infinity Kalman filter</subject><subject>Fitting transformation</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>H infinity</subject><subject>Kalman filters</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Nonlinear systems</subject><subject>Robustness (mathematics)</subject><subject>Satellite navigation systems</subject><subject>Stability analysis</subject><subject>uncertain system</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1uGyEUhUdVKzVK8wTZIGU9Ln8DzNJxk8Zq1C7srhEDdyKsGUiBRPLbF2ciK2xAh3O-e6XTNNcErwjB_ff1ZnO3260oJv2K9gJzgj81F5SIvmUdE58_vL82VzkfcD2qSp28aF7X6Hd8hQnd-1J8eEIP7TaMPvhyRL_MNJtQf6YCCY0xVWuYfACT0N9gIRXjA_rhs01QoN37GdDumAvMGd2aDA7FcObukwm5MmZTfAzfmi-jmTJcvd-Xzf7-br95aB___Nxu1o-t5ViV1kmlCFaC9VaM3I5s5FxCRx0eXE-lYMzKkY70pIHsMXZEMGUZoU4I4Oyy2S5YF81BPyc_m3TU0Xj9JsT0pE0q3k6gna2Jjgy0w4JjxgapeibVMHAnzdCZyrpZWM8p_nuBXPQhvqRQt9eUd1xSJXtVXWxx2RRzTjCepxKsT3XppS59qku_11VT10vKA8A5URfoKKHsPx3akB8</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Xia, Juan</creator><creator>Gao, Shesheng</creator><creator>Zhong, Yongmin</creator><creator>Zhang, Jiahao</creator><creator>Gu, Chengfan</creator><creator>Liu, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0105-9296</orcidid><orcidid>https://orcid.org/0000-0002-3510-0162</orcidid><orcidid>https://orcid.org/0000-0002-7980-9085</orcidid><orcidid>https://orcid.org/0000-0002-4308-2195</orcidid><orcidid>https://orcid.org/0000-0001-9421-2415</orcidid><orcidid>https://orcid.org/0000-0001-8391-5262</orcidid></search><sort><creationdate>2020</creationdate><title>A Novel Fitting H-Infinity Kalman Filter for Nonlinear Uncertain Discrete-Time Systems Based on Fitting Transformation</title><author>Xia, Juan ; Gao, Shesheng ; Zhong, Yongmin ; Zhang, Jiahao ; Gu, Chengfan ; Liu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d788108639c6f4cf3f447e52d0bd927633c7f2f27e52e7900d1638c312d66e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Discrete time systems</topic><topic>Estimation</topic><topic>Extended Kalman filter</topic><topic>Fitting</topic><topic>fitting H-infinity Kalman filter</topic><topic>Fitting transformation</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>H infinity</topic><topic>Kalman filters</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Nonlinear systems</topic><topic>Robustness (mathematics)</topic><topic>Satellite navigation systems</topic><topic>Stability analysis</topic><topic>uncertain system</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Juan</creatorcontrib><creatorcontrib>Gao, Shesheng</creatorcontrib><creatorcontrib>Zhong, Yongmin</creatorcontrib><creatorcontrib>Zhang, Jiahao</creatorcontrib><creatorcontrib>Gu, Chengfan</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Juan</au><au>Gao, Shesheng</au><au>Zhong, Yongmin</au><au>Zhang, Jiahao</au><au>Gu, Chengfan</au><au>Liu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Fitting H-Infinity Kalman Filter for Nonlinear Uncertain Discrete-Time Systems Based on Fitting Transformation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>10554</spage><epage>10568</epage><pages>10554-10568</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The classical Kalman-based filtering algorithm, such as extended Kalman filter or unscented Kalman filter, commonly assumes that the accurate system model or precise noise statistics is known for using. Hence, these filters are not robust estimation to practical systems and always with poor stability, low precision or even divergence since uncertain items exist. In order to tackle these issues, a novel scheme referred to as the fitting H-infinity Kalman filter (FHKF) is proposed and used for robust estimation of the nonlinear uncertain systems. The hardcore of FHKF is the fitting transformation, which is a numerical approximation approach to get the estimation values of coefficient matrix based on least weighted squares. Moreover, FHKF is proposed by applying the coefficient matrix to the structure of the extended H-infinity Kalman filter. Based on the stochastic stability lemma, the stability analysis is presented to verify the error boundness of the proposed filtering. Its efficiency is demonstrated by taking Monte Carlo simulation for the uncertain system and practical experiments in the INS/GPS integrated navigation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2960410</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0105-9296</orcidid><orcidid>https://orcid.org/0000-0002-3510-0162</orcidid><orcidid>https://orcid.org/0000-0002-7980-9085</orcidid><orcidid>https://orcid.org/0000-0002-4308-2195</orcidid><orcidid>https://orcid.org/0000-0001-9421-2415</orcidid><orcidid>https://orcid.org/0000-0001-8391-5262</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.10554-10568
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2960410
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Discrete time systems
Estimation
Extended Kalman filter
Fitting
fitting H-infinity Kalman filter
Fitting transformation
Global positioning systems
GPS
H infinity
Kalman filters
Mathematical analysis
Monte Carlo simulation
Nonlinear systems
Robustness (mathematics)
Satellite navigation systems
Stability analysis
uncertain system
Uncertainty
title A Novel Fitting H-Infinity Kalman Filter for Nonlinear Uncertain Discrete-Time Systems Based on Fitting Transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Fitting%20H-Infinity%20Kalman%20Filter%20for%20Nonlinear%20Uncertain%20Discrete-Time%20Systems%20Based%20on%20Fitting%20Transformation&rft.jtitle=IEEE%20access&rft.au=Xia,%20Juan&rft.date=2020&rft.volume=8&rft.spage=10554&rft.epage=10568&rft.pages=10554-10568&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2960410&rft_dat=%3Cproquest_cross%3E2454728798%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454728798&rft_id=info:pmid/&rft_ieee_id=8935212&rft_doaj_id=oai_doaj_org_article_dc66e51b25064033b789378bb4d7ab5a&rfr_iscdi=true