TAP: A High-Precision Network Timing Method Over Air Interface Based on Physical-Layer Signals

Absolute time synchronization (timing) is a constant demand in various fields. There are many timing techniques at present. They are mainly based on dedicated equipments such as GNSS or specific protocols such as NTP, PTP, SIB16, etc. Different timing methods are applied according to the scenario, c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.175959-175969
Hauptverfasser: Zhang, Chenyu, Zheng, Wei, Wen, Xiangming, Lu, Zhaoming, Wang, Luhan, Wang, Zhengying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175969
container_issue
container_start_page 175959
container_title IEEE access
container_volume 7
creator Zhang, Chenyu
Zheng, Wei
Wen, Xiangming
Lu, Zhaoming
Wang, Luhan
Wang, Zhengying
description Absolute time synchronization (timing) is a constant demand in various fields. There are many timing techniques at present. They are mainly based on dedicated equipments such as GNSS or specific protocols such as NTP, PTP, SIB16, etc. Different timing methods are applied according to the scenario, cost and demands for timing accuracy. Recently, the timing demands for some wireless scenarios have become increasingly urgent, like power IoT and auto-driving. However, due to the instability and complexity of radio link, the current methods can hardly meet the demands of high-precision and low cost simultaneously in mobile network. Here we propose a timing method over air interface based on physical layer signals (TAP). Periodic physical layer signals in both downlink and uplink channel are considered to reduce the impact of radio link instability on timing. We implemented the proposed method on an open source LTE software defined radio platform named OpenAirInterface and conducted a series of tests. Our tests prove that TAP can provide microsecond-level timing over the air interface, and it is more stable and precise than PTP. Further simulation shows that using TAP in 5G NR can improve the timing accuracy.
doi_str_mv 10.1109/ACCESS.2019.2958114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2958114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8926458</ieee_id><doaj_id>oai_doaj_org_article_bb04db7a480b45c992fa72411453ab7e</doaj_id><sourcerecordid>2455616143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a0d3367db6fe9ac56b709490d242c831c278d1846a1f01207ce77d9b5cb49e13</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoLDWl-QS6CntfVt1a9bU3aGNzGYJ8r9DFry3WsVNqk-N9HzobQuczweO8NM69prgmeEYL1l34-v1mvZxQTPaNadITwd80FJVK3TDD5_r_5Y3NVyh7X6iok1EXze9OvvqIe3cbtrl1l8LHEdES_YPyX8h-0iffxuEU_YdylgO6eIKM-ZrQ4jpAH6wF9swUCqorV7lSit4d2aU-VtY7boz2UT82HoTa4eu2Xzeb7zWZ-2y7vfizm_bL1HHdja3FgTKrg5ADaeiGdwpprHCinvmPEU9UF0nFpyYAJxcqDUkE74R3XQNhls5hsQ7J785Djvc0nk2w0L0DKW2PzGP0BjHOYB6cs77DjwmtNB6sor08TzDoF1evz5PWQ099HKKPZp8d8PsZQLoQkknBWWWxi-ZxKyTC8bSXYnGMxUyzmHIt5jaWqridVBIA3Raep5KJjz5xVhp8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455616143</pqid></control><display><type>article</type><title>TAP: A High-Precision Network Timing Method Over Air Interface Based on Physical-Layer Signals</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Chenyu ; Zheng, Wei ; Wen, Xiangming ; Lu, Zhaoming ; Wang, Luhan ; Wang, Zhengying</creator><creatorcontrib>Zhang, Chenyu ; Zheng, Wei ; Wen, Xiangming ; Lu, Zhaoming ; Wang, Luhan ; Wang, Zhengying</creatorcontrib><description>Absolute time synchronization (timing) is a constant demand in various fields. There are many timing techniques at present. They are mainly based on dedicated equipments such as GNSS or specific protocols such as NTP, PTP, SIB16, etc. Different timing methods are applied according to the scenario, cost and demands for timing accuracy. Recently, the timing demands for some wireless scenarios have become increasingly urgent, like power IoT and auto-driving. However, due to the instability and complexity of radio link, the current methods can hardly meet the demands of high-precision and low cost simultaneously in mobile network. Here we propose a timing method over air interface based on physical layer signals (TAP). Periodic physical layer signals in both downlink and uplink channel are considered to reduce the impact of radio link instability on timing. We implemented the proposed method on an open source LTE software defined radio platform named OpenAirInterface and conducted a series of tests. Our tests prove that TAP can provide microsecond-level timing over the air interface, and it is more stable and precise than PTP. Further simulation shows that using TAP in 5G NR can improve the timing accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2958114</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air interface ; Communication channels ; Downlink ; Global navigation satellite system ; high-precision timing ; IoT ; Physical layer ; Protocol (computers) ; Protocols ; Software radio ; Synchronization ; Time synchronization ; Wireless networks</subject><ispartof>IEEE access, 2019, Vol.7, p.175959-175969</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a0d3367db6fe9ac56b709490d242c831c278d1846a1f01207ce77d9b5cb49e13</citedby><cites>FETCH-LOGICAL-c408t-a0d3367db6fe9ac56b709490d242c831c278d1846a1f01207ce77d9b5cb49e13</cites><orcidid>0000-0002-0182-1770 ; 0000-0001-9259-7358 ; 0000-0002-7056-5416 ; 0000-0003-2793-6696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8926458$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Zhang, Chenyu</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Wen, Xiangming</creatorcontrib><creatorcontrib>Lu, Zhaoming</creatorcontrib><creatorcontrib>Wang, Luhan</creatorcontrib><creatorcontrib>Wang, Zhengying</creatorcontrib><title>TAP: A High-Precision Network Timing Method Over Air Interface Based on Physical-Layer Signals</title><title>IEEE access</title><addtitle>Access</addtitle><description>Absolute time synchronization (timing) is a constant demand in various fields. There are many timing techniques at present. They are mainly based on dedicated equipments such as GNSS or specific protocols such as NTP, PTP, SIB16, etc. Different timing methods are applied according to the scenario, cost and demands for timing accuracy. Recently, the timing demands for some wireless scenarios have become increasingly urgent, like power IoT and auto-driving. However, due to the instability and complexity of radio link, the current methods can hardly meet the demands of high-precision and low cost simultaneously in mobile network. Here we propose a timing method over air interface based on physical layer signals (TAP). Periodic physical layer signals in both downlink and uplink channel are considered to reduce the impact of radio link instability on timing. We implemented the proposed method on an open source LTE software defined radio platform named OpenAirInterface and conducted a series of tests. Our tests prove that TAP can provide microsecond-level timing over the air interface, and it is more stable and precise than PTP. Further simulation shows that using TAP in 5G NR can improve the timing accuracy.</description><subject>Air interface</subject><subject>Communication channels</subject><subject>Downlink</subject><subject>Global navigation satellite system</subject><subject>high-precision timing</subject><subject>IoT</subject><subject>Physical layer</subject><subject>Protocol (computers)</subject><subject>Protocols</subject><subject>Software radio</subject><subject>Synchronization</subject><subject>Time synchronization</subject><subject>Wireless networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoLDWl-QS6CntfVt1a9bU3aGNzGYJ8r9DFry3WsVNqk-N9HzobQuczweO8NM69prgmeEYL1l34-v1mvZxQTPaNadITwd80FJVK3TDD5_r_5Y3NVyh7X6iok1EXze9OvvqIe3cbtrl1l8LHEdES_YPyX8h-0iffxuEU_YdylgO6eIKM-ZrQ4jpAH6wF9swUCqorV7lSit4d2aU-VtY7boz2UT82HoTa4eu2Xzeb7zWZ-2y7vfizm_bL1HHdja3FgTKrg5ADaeiGdwpprHCinvmPEU9UF0nFpyYAJxcqDUkE74R3XQNhls5hsQ7J785Djvc0nk2w0L0DKW2PzGP0BjHOYB6cs77DjwmtNB6sor08TzDoF1evz5PWQ099HKKPZp8d8PsZQLoQkknBWWWxi-ZxKyTC8bSXYnGMxUyzmHIt5jaWqridVBIA3Raep5KJjz5xVhp8</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhang, Chenyu</creator><creator>Zheng, Wei</creator><creator>Wen, Xiangming</creator><creator>Lu, Zhaoming</creator><creator>Wang, Luhan</creator><creator>Wang, Zhengying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0182-1770</orcidid><orcidid>https://orcid.org/0000-0001-9259-7358</orcidid><orcidid>https://orcid.org/0000-0002-7056-5416</orcidid><orcidid>https://orcid.org/0000-0003-2793-6696</orcidid></search><sort><creationdate>2019</creationdate><title>TAP: A High-Precision Network Timing Method Over Air Interface Based on Physical-Layer Signals</title><author>Zhang, Chenyu ; Zheng, Wei ; Wen, Xiangming ; Lu, Zhaoming ; Wang, Luhan ; Wang, Zhengying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a0d3367db6fe9ac56b709490d242c831c278d1846a1f01207ce77d9b5cb49e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air interface</topic><topic>Communication channels</topic><topic>Downlink</topic><topic>Global navigation satellite system</topic><topic>high-precision timing</topic><topic>IoT</topic><topic>Physical layer</topic><topic>Protocol (computers)</topic><topic>Protocols</topic><topic>Software radio</topic><topic>Synchronization</topic><topic>Time synchronization</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chenyu</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Wen, Xiangming</creatorcontrib><creatorcontrib>Lu, Zhaoming</creatorcontrib><creatorcontrib>Wang, Luhan</creatorcontrib><creatorcontrib>Wang, Zhengying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chenyu</au><au>Zheng, Wei</au><au>Wen, Xiangming</au><au>Lu, Zhaoming</au><au>Wang, Luhan</au><au>Wang, Zhengying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TAP: A High-Precision Network Timing Method Over Air Interface Based on Physical-Layer Signals</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>175959</spage><epage>175969</epage><pages>175959-175969</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Absolute time synchronization (timing) is a constant demand in various fields. There are many timing techniques at present. They are mainly based on dedicated equipments such as GNSS or specific protocols such as NTP, PTP, SIB16, etc. Different timing methods are applied according to the scenario, cost and demands for timing accuracy. Recently, the timing demands for some wireless scenarios have become increasingly urgent, like power IoT and auto-driving. However, due to the instability and complexity of radio link, the current methods can hardly meet the demands of high-precision and low cost simultaneously in mobile network. Here we propose a timing method over air interface based on physical layer signals (TAP). Periodic physical layer signals in both downlink and uplink channel are considered to reduce the impact of radio link instability on timing. We implemented the proposed method on an open source LTE software defined radio platform named OpenAirInterface and conducted a series of tests. Our tests prove that TAP can provide microsecond-level timing over the air interface, and it is more stable and precise than PTP. Further simulation shows that using TAP in 5G NR can improve the timing accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2958114</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0182-1770</orcidid><orcidid>https://orcid.org/0000-0001-9259-7358</orcidid><orcidid>https://orcid.org/0000-0002-7056-5416</orcidid><orcidid>https://orcid.org/0000-0003-2793-6696</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.175959-175969
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2958114
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Air interface
Communication channels
Downlink
Global navigation satellite system
high-precision timing
IoT
Physical layer
Protocol (computers)
Protocols
Software radio
Synchronization
Time synchronization
Wireless networks
title TAP: A High-Precision Network Timing Method Over Air Interface Based on Physical-Layer Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TAP:%20A%20High-Precision%20Network%20Timing%20Method%20Over%20Air%20Interface%20Based%20on%20Physical-Layer%20Signals&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Chenyu&rft.date=2019&rft.volume=7&rft.spage=175959&rft.epage=175969&rft.pages=175959-175969&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2958114&rft_dat=%3Cproquest_cross%3E2455616143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455616143&rft_id=info:pmid/&rft_ieee_id=8926458&rft_doaj_id=oai_doaj_org_article_bb04db7a480b45c992fa72411453ab7e&rfr_iscdi=true