TAP: A High-Precision Network Timing Method Over Air Interface Based on Physical-Layer Signals
Absolute time synchronization (timing) is a constant demand in various fields. There are many timing techniques at present. They are mainly based on dedicated equipments such as GNSS or specific protocols such as NTP, PTP, SIB16, etc. Different timing methods are applied according to the scenario, c...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.175959-175969 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175969 |
---|---|
container_issue | |
container_start_page | 175959 |
container_title | IEEE access |
container_volume | 7 |
creator | Zhang, Chenyu Zheng, Wei Wen, Xiangming Lu, Zhaoming Wang, Luhan Wang, Zhengying |
description | Absolute time synchronization (timing) is a constant demand in various fields. There are many timing techniques at present. They are mainly based on dedicated equipments such as GNSS or specific protocols such as NTP, PTP, SIB16, etc. Different timing methods are applied according to the scenario, cost and demands for timing accuracy. Recently, the timing demands for some wireless scenarios have become increasingly urgent, like power IoT and auto-driving. However, due to the instability and complexity of radio link, the current methods can hardly meet the demands of high-precision and low cost simultaneously in mobile network. Here we propose a timing method over air interface based on physical layer signals (TAP). Periodic physical layer signals in both downlink and uplink channel are considered to reduce the impact of radio link instability on timing. We implemented the proposed method on an open source LTE software defined radio platform named OpenAirInterface and conducted a series of tests. Our tests prove that TAP can provide microsecond-level timing over the air interface, and it is more stable and precise than PTP. Further simulation shows that using TAP in 5G NR can improve the timing accuracy. |
doi_str_mv | 10.1109/ACCESS.2019.2958114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2958114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8926458</ieee_id><doaj_id>oai_doaj_org_article_bb04db7a480b45c992fa72411453ab7e</doaj_id><sourcerecordid>2455616143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a0d3367db6fe9ac56b709490d242c831c278d1846a1f01207ce77d9b5cb49e13</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoLDWl-QS6CntfVt1a9bU3aGNzGYJ8r9DFry3WsVNqk-N9HzobQuczweO8NM69prgmeEYL1l34-v1mvZxQTPaNadITwd80FJVK3TDD5_r_5Y3NVyh7X6iok1EXze9OvvqIe3cbtrl1l8LHEdES_YPyX8h-0iffxuEU_YdylgO6eIKM-ZrQ4jpAH6wF9swUCqorV7lSit4d2aU-VtY7boz2UT82HoTa4eu2Xzeb7zWZ-2y7vfizm_bL1HHdja3FgTKrg5ADaeiGdwpprHCinvmPEU9UF0nFpyYAJxcqDUkE74R3XQNhls5hsQ7J785Djvc0nk2w0L0DKW2PzGP0BjHOYB6cs77DjwmtNB6sor08TzDoF1evz5PWQ099HKKPZp8d8PsZQLoQkknBWWWxi-ZxKyTC8bSXYnGMxUyzmHIt5jaWqridVBIA3Raep5KJjz5xVhp8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455616143</pqid></control><display><type>article</type><title>TAP: A High-Precision Network Timing Method Over Air Interface Based on Physical-Layer Signals</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Chenyu ; Zheng, Wei ; Wen, Xiangming ; Lu, Zhaoming ; Wang, Luhan ; Wang, Zhengying</creator><creatorcontrib>Zhang, Chenyu ; Zheng, Wei ; Wen, Xiangming ; Lu, Zhaoming ; Wang, Luhan ; Wang, Zhengying</creatorcontrib><description>Absolute time synchronization (timing) is a constant demand in various fields. There are many timing techniques at present. They are mainly based on dedicated equipments such as GNSS or specific protocols such as NTP, PTP, SIB16, etc. Different timing methods are applied according to the scenario, cost and demands for timing accuracy. Recently, the timing demands for some wireless scenarios have become increasingly urgent, like power IoT and auto-driving. However, due to the instability and complexity of radio link, the current methods can hardly meet the demands of high-precision and low cost simultaneously in mobile network. Here we propose a timing method over air interface based on physical layer signals (TAP). Periodic physical layer signals in both downlink and uplink channel are considered to reduce the impact of radio link instability on timing. We implemented the proposed method on an open source LTE software defined radio platform named OpenAirInterface and conducted a series of tests. Our tests prove that TAP can provide microsecond-level timing over the air interface, and it is more stable and precise than PTP. Further simulation shows that using TAP in 5G NR can improve the timing accuracy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2958114</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air interface ; Communication channels ; Downlink ; Global navigation satellite system ; high-precision timing ; IoT ; Physical layer ; Protocol (computers) ; Protocols ; Software radio ; Synchronization ; Time synchronization ; Wireless networks</subject><ispartof>IEEE access, 2019, Vol.7, p.175959-175969</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a0d3367db6fe9ac56b709490d242c831c278d1846a1f01207ce77d9b5cb49e13</citedby><cites>FETCH-LOGICAL-c408t-a0d3367db6fe9ac56b709490d242c831c278d1846a1f01207ce77d9b5cb49e13</cites><orcidid>0000-0002-0182-1770 ; 0000-0001-9259-7358 ; 0000-0002-7056-5416 ; 0000-0003-2793-6696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8926458$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Zhang, Chenyu</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Wen, Xiangming</creatorcontrib><creatorcontrib>Lu, Zhaoming</creatorcontrib><creatorcontrib>Wang, Luhan</creatorcontrib><creatorcontrib>Wang, Zhengying</creatorcontrib><title>TAP: A High-Precision Network Timing Method Over Air Interface Based on Physical-Layer Signals</title><title>IEEE access</title><addtitle>Access</addtitle><description>Absolute time synchronization (timing) is a constant demand in various fields. There are many timing techniques at present. They are mainly based on dedicated equipments such as GNSS or specific protocols such as NTP, PTP, SIB16, etc. Different timing methods are applied according to the scenario, cost and demands for timing accuracy. Recently, the timing demands for some wireless scenarios have become increasingly urgent, like power IoT and auto-driving. However, due to the instability and complexity of radio link, the current methods can hardly meet the demands of high-precision and low cost simultaneously in mobile network. Here we propose a timing method over air interface based on physical layer signals (TAP). Periodic physical layer signals in both downlink and uplink channel are considered to reduce the impact of radio link instability on timing. We implemented the proposed method on an open source LTE software defined radio platform named OpenAirInterface and conducted a series of tests. Our tests prove that TAP can provide microsecond-level timing over the air interface, and it is more stable and precise than PTP. Further simulation shows that using TAP in 5G NR can improve the timing accuracy.</description><subject>Air interface</subject><subject>Communication channels</subject><subject>Downlink</subject><subject>Global navigation satellite system</subject><subject>high-precision timing</subject><subject>IoT</subject><subject>Physical layer</subject><subject>Protocol (computers)</subject><subject>Protocols</subject><subject>Software radio</subject><subject>Synchronization</subject><subject>Time synchronization</subject><subject>Wireless networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoLDWl-QS6CntfVt1a9bU3aGNzGYJ8r9DFry3WsVNqk-N9HzobQuczweO8NM69prgmeEYL1l34-v1mvZxQTPaNadITwd80FJVK3TDD5_r_5Y3NVyh7X6iok1EXze9OvvqIe3cbtrl1l8LHEdES_YPyX8h-0iffxuEU_YdylgO6eIKM-ZrQ4jpAH6wF9swUCqorV7lSit4d2aU-VtY7boz2UT82HoTa4eu2Xzeb7zWZ-2y7vfizm_bL1HHdja3FgTKrg5ADaeiGdwpprHCinvmPEU9UF0nFpyYAJxcqDUkE74R3XQNhls5hsQ7J785Djvc0nk2w0L0DKW2PzGP0BjHOYB6cs77DjwmtNB6sor08TzDoF1evz5PWQ099HKKPZp8d8PsZQLoQkknBWWWxi-ZxKyTC8bSXYnGMxUyzmHIt5jaWqridVBIA3Raep5KJjz5xVhp8</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhang, Chenyu</creator><creator>Zheng, Wei</creator><creator>Wen, Xiangming</creator><creator>Lu, Zhaoming</creator><creator>Wang, Luhan</creator><creator>Wang, Zhengying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0182-1770</orcidid><orcidid>https://orcid.org/0000-0001-9259-7358</orcidid><orcidid>https://orcid.org/0000-0002-7056-5416</orcidid><orcidid>https://orcid.org/0000-0003-2793-6696</orcidid></search><sort><creationdate>2019</creationdate><title>TAP: A High-Precision Network Timing Method Over Air Interface Based on Physical-Layer Signals</title><author>Zhang, Chenyu ; Zheng, Wei ; Wen, Xiangming ; Lu, Zhaoming ; Wang, Luhan ; Wang, Zhengying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a0d3367db6fe9ac56b709490d242c831c278d1846a1f01207ce77d9b5cb49e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air interface</topic><topic>Communication channels</topic><topic>Downlink</topic><topic>Global navigation satellite system</topic><topic>high-precision timing</topic><topic>IoT</topic><topic>Physical layer</topic><topic>Protocol (computers)</topic><topic>Protocols</topic><topic>Software radio</topic><topic>Synchronization</topic><topic>Time synchronization</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chenyu</creatorcontrib><creatorcontrib>Zheng, Wei</creatorcontrib><creatorcontrib>Wen, Xiangming</creatorcontrib><creatorcontrib>Lu, Zhaoming</creatorcontrib><creatorcontrib>Wang, Luhan</creatorcontrib><creatorcontrib>Wang, Zhengying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chenyu</au><au>Zheng, Wei</au><au>Wen, Xiangming</au><au>Lu, Zhaoming</au><au>Wang, Luhan</au><au>Wang, Zhengying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TAP: A High-Precision Network Timing Method Over Air Interface Based on Physical-Layer Signals</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>175959</spage><epage>175969</epage><pages>175959-175969</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Absolute time synchronization (timing) is a constant demand in various fields. There are many timing techniques at present. They are mainly based on dedicated equipments such as GNSS or specific protocols such as NTP, PTP, SIB16, etc. Different timing methods are applied according to the scenario, cost and demands for timing accuracy. Recently, the timing demands for some wireless scenarios have become increasingly urgent, like power IoT and auto-driving. However, due to the instability and complexity of radio link, the current methods can hardly meet the demands of high-precision and low cost simultaneously in mobile network. Here we propose a timing method over air interface based on physical layer signals (TAP). Periodic physical layer signals in both downlink and uplink channel are considered to reduce the impact of radio link instability on timing. We implemented the proposed method on an open source LTE software defined radio platform named OpenAirInterface and conducted a series of tests. Our tests prove that TAP can provide microsecond-level timing over the air interface, and it is more stable and precise than PTP. Further simulation shows that using TAP in 5G NR can improve the timing accuracy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2958114</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0182-1770</orcidid><orcidid>https://orcid.org/0000-0001-9259-7358</orcidid><orcidid>https://orcid.org/0000-0002-7056-5416</orcidid><orcidid>https://orcid.org/0000-0003-2793-6696</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.175959-175969 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2019_2958114 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Air interface Communication channels Downlink Global navigation satellite system high-precision timing IoT Physical layer Protocol (computers) Protocols Software radio Synchronization Time synchronization Wireless networks |
title | TAP: A High-Precision Network Timing Method Over Air Interface Based on Physical-Layer Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A04%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TAP:%20A%20High-Precision%20Network%20Timing%20Method%20Over%20Air%20Interface%20Based%20on%20Physical-Layer%20Signals&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Chenyu&rft.date=2019&rft.volume=7&rft.spage=175959&rft.epage=175969&rft.pages=175959-175969&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2958114&rft_dat=%3Cproquest_cross%3E2455616143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455616143&rft_id=info:pmid/&rft_ieee_id=8926458&rft_doaj_id=oai_doaj_org_article_bb04db7a480b45c992fa72411453ab7e&rfr_iscdi=true |