A Document Ranking Method With Query-Related Web Context

In this paper, an approach is proposed to evaluate and rearrange web pages, based on the query-related web context. The contexts we focus on are the terms co-occurring with queries in microblogs. The proposed approach is based on the retrieved result by a search engine. If a query is given, it retri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.150168-150174
1. Verfasser: Kim, Jaekwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150174
container_issue
container_start_page 150168
container_title IEEE access
container_volume 7
creator Kim, Jaekwang
description In this paper, an approach is proposed to evaluate and rearrange web pages, based on the query-related web context. The contexts we focus on are the terms co-occurring with queries in microblogs. The proposed approach is based on the retrieved result by a search engine. If a query is given, it retrieves the search results, and checks whether the query is on a burst state or not. If the query is on a burst state (or popular state), our method applies the query-related context to the search results. Since context terms can reflect the current interest of people regarding the query, a web page can be considered within the current interest of people, if it has many of the context terms. Thus, the retrieved web pages are re-ranked based on the context terms, to present the search result in accordance with the current public interest. We present some observations that show microblog contents and search queries are strongly related, if queries are on a burst state. In order to verify the effect of context terms, we conduct experiments, and compare the result with Google using a questionnaire survey.
doi_str_mv 10.1109/ACCESS.2019.2947166
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2947166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8867869</ieee_id><doaj_id>oai_doaj_org_article_4fe54363bdc14769b136b55206617d84</doaj_id><sourcerecordid>2455641647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1a2353b5ade2e9e0770a7a8655de23b040a404c141c5197c85a83887232cdeee3</originalsourceid><addsrcrecordid>eNpNUMtOwkAUbYwmEuUL2DRxXZz3Y0kqKgnGCBqXk2l7gSJ0cDok8vcOlhDv5t6c3PPISZIBRkOMkb4f5fl4Ph8ShPWQaCaxEBdJj2ChM8qpuPx3Xyf9tl2jOCpCXPYSNUofXLnfQhPSmW2-6maZvkBYuSr9rMMqfduDP2Qz2NgAEYIizV0T4CfcJlcLu2mhf9o3ycfj-D1_zqavT5N8NM1KhlTIsCXRuOC2AgIakJTISqsE5xGgBWLIMsRKzHDJsZal4lZRpSShpKwAgN4kk063cnZtdr7eWn8wztbmD3B-aawPdbkBwxbAGRW0qKKeFLrAVBScEyQElpViUeuu09p5972HNpi12_smxjeEcS4YFkzGL9p9ld61rYfF2RUjc2zcdI2bY-Pm1HhkDTpWHVOfGUoJqYSmv1aUeQ4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455641647</pqid></control><display><type>article</type><title>A Document Ranking Method With Query-Related Web Context</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Jaekwang</creator><creatorcontrib>Kim, Jaekwang</creatorcontrib><description>In this paper, an approach is proposed to evaluate and rearrange web pages, based on the query-related web context. The contexts we focus on are the terms co-occurring with queries in microblogs. The proposed approach is based on the retrieved result by a search engine. If a query is given, it retrieves the search results, and checks whether the query is on a burst state or not. If the query is on a burst state (or popular state), our method applies the query-related context to the search results. Since context terms can reflect the current interest of people regarding the query, a web page can be considered within the current interest of people, if it has many of the context terms. Thus, the retrieved web pages are re-ranked based on the context terms, to present the search result in accordance with the current public interest. We present some observations that show microblog contents and search queries are strongly related, if queries are on a burst state. In order to verify the effect of context terms, we conduct experiments, and compare the result with Google using a questionnaire survey.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2947166</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Context ; Correlation ; document ranking ; Earthquakes ; Google ; microblogs ; Probabilistic logic ; Queries ; Query ; Search engines ; Twitter ; web context ; Web pages ; Websites</subject><ispartof>IEEE access, 2019, Vol.7, p.150168-150174</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1a2353b5ade2e9e0770a7a8655de23b040a404c141c5197c85a83887232cdeee3</citedby><cites>FETCH-LOGICAL-c408t-1a2353b5ade2e9e0770a7a8655de23b040a404c141c5197c85a83887232cdeee3</cites><orcidid>0000-0001-5174-0074</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8867869$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Kim, Jaekwang</creatorcontrib><title>A Document Ranking Method With Query-Related Web Context</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, an approach is proposed to evaluate and rearrange web pages, based on the query-related web context. The contexts we focus on are the terms co-occurring with queries in microblogs. The proposed approach is based on the retrieved result by a search engine. If a query is given, it retrieves the search results, and checks whether the query is on a burst state or not. If the query is on a burst state (or popular state), our method applies the query-related context to the search results. Since context terms can reflect the current interest of people regarding the query, a web page can be considered within the current interest of people, if it has many of the context terms. Thus, the retrieved web pages are re-ranked based on the context terms, to present the search result in accordance with the current public interest. We present some observations that show microblog contents and search queries are strongly related, if queries are on a burst state. In order to verify the effect of context terms, we conduct experiments, and compare the result with Google using a questionnaire survey.</description><subject>Context</subject><subject>Correlation</subject><subject>document ranking</subject><subject>Earthquakes</subject><subject>Google</subject><subject>microblogs</subject><subject>Probabilistic logic</subject><subject>Queries</subject><subject>Query</subject><subject>Search engines</subject><subject>Twitter</subject><subject>web context</subject><subject>Web pages</subject><subject>Websites</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMtOwkAUbYwmEuUL2DRxXZz3Y0kqKgnGCBqXk2l7gSJ0cDok8vcOlhDv5t6c3PPISZIBRkOMkb4f5fl4Ph8ShPWQaCaxEBdJj2ChM8qpuPx3Xyf9tl2jOCpCXPYSNUofXLnfQhPSmW2-6maZvkBYuSr9rMMqfduDP2Qz2NgAEYIizV0T4CfcJlcLu2mhf9o3ycfj-D1_zqavT5N8NM1KhlTIsCXRuOC2AgIakJTISqsE5xGgBWLIMsRKzHDJsZal4lZRpSShpKwAgN4kk063cnZtdr7eWn8wztbmD3B-aawPdbkBwxbAGRW0qKKeFLrAVBScEyQElpViUeuu09p5972HNpi12_smxjeEcS4YFkzGL9p9ld61rYfF2RUjc2zcdI2bY-Pm1HhkDTpWHVOfGUoJqYSmv1aUeQ4</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kim, Jaekwang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5174-0074</orcidid></search><sort><creationdate>2019</creationdate><title>A Document Ranking Method With Query-Related Web Context</title><author>Kim, Jaekwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1a2353b5ade2e9e0770a7a8655de23b040a404c141c5197c85a83887232cdeee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Context</topic><topic>Correlation</topic><topic>document ranking</topic><topic>Earthquakes</topic><topic>Google</topic><topic>microblogs</topic><topic>Probabilistic logic</topic><topic>Queries</topic><topic>Query</topic><topic>Search engines</topic><topic>Twitter</topic><topic>web context</topic><topic>Web pages</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jaekwang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jaekwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Document Ranking Method With Query-Related Web Context</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>150168</spage><epage>150174</epage><pages>150168-150174</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, an approach is proposed to evaluate and rearrange web pages, based on the query-related web context. The contexts we focus on are the terms co-occurring with queries in microblogs. The proposed approach is based on the retrieved result by a search engine. If a query is given, it retrieves the search results, and checks whether the query is on a burst state or not. If the query is on a burst state (or popular state), our method applies the query-related context to the search results. Since context terms can reflect the current interest of people regarding the query, a web page can be considered within the current interest of people, if it has many of the context terms. Thus, the retrieved web pages are re-ranked based on the context terms, to present the search result in accordance with the current public interest. We present some observations that show microblog contents and search queries are strongly related, if queries are on a burst state. In order to verify the effect of context terms, we conduct experiments, and compare the result with Google using a questionnaire survey.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2947166</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5174-0074</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.150168-150174
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2947166
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Context
Correlation
document ranking
Earthquakes
Google
microblogs
Probabilistic logic
Queries
Query
Search engines
Twitter
web context
Web pages
Websites
title A Document Ranking Method With Query-Related Web Context
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Document%20Ranking%20Method%20With%20Query-Related%20Web%20Context&rft.jtitle=IEEE%20access&rft.au=Kim,%20Jaekwang&rft.date=2019&rft.volume=7&rft.spage=150168&rft.epage=150174&rft.pages=150168-150174&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2947166&rft_dat=%3Cproquest_cross%3E2455641647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455641647&rft_id=info:pmid/&rft_ieee_id=8867869&rft_doaj_id=oai_doaj_org_article_4fe54363bdc14769b136b55206617d84&rfr_iscdi=true