Integration of Numerical Simulation and Control Scheme for Energy Conservation of Aluminum Melting Furnaces

Aluminum melting process is a semi-continuous process with high-energy consumption. In this paper, a software-based strategy which considers numerical simulation and control scheme simultaneously is employed to improve energy consumption of aluminum melting furnaces without changing the hardware. Fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.114659-114669
Hauptverfasser: Guo, Na, Zheng, Hongyu, Zou, Tao, Jia, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114669
container_issue
container_start_page 114659
container_title IEEE access
container_volume 7
creator Guo, Na
Zheng, Hongyu
Zou, Tao
Jia, Yang
description Aluminum melting process is a semi-continuous process with high-energy consumption. In this paper, a software-based strategy which considers numerical simulation and control scheme simultaneously is employed to improve energy consumption of aluminum melting furnaces without changing the hardware. For numerical simulation, a nonlinear steady-state optimization is performed offline to obtain optimal operating points. Extensively, the optimal operating conditions include not only product exit temperature, but also ratio of combustion air flow and natural gas flow, furnace temperature, flue gas temperature and some important manipulated variables. For control scheme, a two-layer model predictive control which consists of steady state target calculation and dynamic optimization is developed to track the optimal operating conditions. In steady state target calculation layer, a priority strategy is proposed based on the different importance of controlled variables to make the steady state targets more reasonably. In dynamic optimization layer, a quadratic objective function is defined in terms of tracking both the optimal steady-state of controlled variables and manipulated variables. The method is successfully carried out in F1 aluminum melting furnace of a company in Tianjin. Compared with previous operation, the comprehensive energy consumption and the comprehensive energy consumption for unit output of product decrease 5.99% and 6.56% respectively.
doi_str_mv 10.1109/ACCESS.2019.2934187
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2934187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8793189</ieee_id><doaj_id>oai_doaj_org_article_79adf5ff6ea14c048c76fc6a7f26b74f</doaj_id><sourcerecordid>2455596285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-61b682071f9adb73d5464dee71b5c84c61cfd8b94dca06322efcd6a3f65605f73</originalsourceid><addsrcrecordid>eNpNUctO40AQtNCutAj4glwscU523o9jZIUlEguHwHk0HveECbaHnbGR-HucdRTRl25Vd1WpVUWxwGiFMdK_11W12e1WBGG9IpoyrORFcUmw0EvKqfjxbf5V3OR8QFOpCeLysnjb9gPskx1C7Mvoy8exgxScbctd6MZ2xm3flFXshxQn2L1CB6WPqdz0kPafx02G9HGWWLdjF_qxK_9CO4R-X96NqbcO8nXx09s2w82pXxUvd5vn6n758PRnW60flo4hNSwFroUiSGKvbVNL2nAmWAMgcc2dYk5g5xtVa9Y4iwQlBLxrhKVecIG4l_Sq2M66TbQH855CZ9OniTaY_0BMe2PTEFwLRk4WnnsvwGLmEFNOCu-ElZ6IWjI_ad3OWu8p_hshD-YQj--02RDGOdeCKD5d0fnKpZhzAn92xcgcQzJzSOYYkjmFNLEWMysAwJmhpKZYafoFXWCPPw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455596285</pqid></control><display><type>article</type><title>Integration of Numerical Simulation and Control Scheme for Energy Conservation of Aluminum Melting Furnaces</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Guo, Na ; Zheng, Hongyu ; Zou, Tao ; Jia, Yang</creator><creatorcontrib>Guo, Na ; Zheng, Hongyu ; Zou, Tao ; Jia, Yang</creatorcontrib><description>Aluminum melting process is a semi-continuous process with high-energy consumption. In this paper, a software-based strategy which considers numerical simulation and control scheme simultaneously is employed to improve energy consumption of aluminum melting furnaces without changing the hardware. For numerical simulation, a nonlinear steady-state optimization is performed offline to obtain optimal operating points. Extensively, the optimal operating conditions include not only product exit temperature, but also ratio of combustion air flow and natural gas flow, furnace temperature, flue gas temperature and some important manipulated variables. For control scheme, a two-layer model predictive control which consists of steady state target calculation and dynamic optimization is developed to track the optimal operating conditions. In steady state target calculation layer, a priority strategy is proposed based on the different importance of controlled variables to make the steady state targets more reasonably. In dynamic optimization layer, a quadratic objective function is defined in terms of tracking both the optimal steady-state of controlled variables and manipulated variables. The method is successfully carried out in F1 aluminum melting furnace of a company in Tianjin. Compared with previous operation, the comprehensive energy consumption and the comprehensive energy consumption for unit output of product decrease 5.99% and 6.56% respectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2934187</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air flow ; Aluminum ; Combustion ; Continuous furnaces ; control engineering ; Energy conservation ; Energy consumption ; Flue gas ; Furnaces ; Gas flow ; Gas temperature ; Mathematical models ; Melting furnaces ; Melting processing ; Natural gas ; Numerical simulation ; Optimization ; Predictive control ; Simulation ; Steady state ; steady-state target calculation</subject><ispartof>IEEE access, 2019, Vol.7, p.114659-114669</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-61b682071f9adb73d5464dee71b5c84c61cfd8b94dca06322efcd6a3f65605f73</citedby><cites>FETCH-LOGICAL-c408t-61b682071f9adb73d5464dee71b5c84c61cfd8b94dca06322efcd6a3f65605f73</cites><orcidid>0000-0002-9556-0451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8793189$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Guo, Na</creatorcontrib><creatorcontrib>Zheng, Hongyu</creatorcontrib><creatorcontrib>Zou, Tao</creatorcontrib><creatorcontrib>Jia, Yang</creatorcontrib><title>Integration of Numerical Simulation and Control Scheme for Energy Conservation of Aluminum Melting Furnaces</title><title>IEEE access</title><addtitle>Access</addtitle><description>Aluminum melting process is a semi-continuous process with high-energy consumption. In this paper, a software-based strategy which considers numerical simulation and control scheme simultaneously is employed to improve energy consumption of aluminum melting furnaces without changing the hardware. For numerical simulation, a nonlinear steady-state optimization is performed offline to obtain optimal operating points. Extensively, the optimal operating conditions include not only product exit temperature, but also ratio of combustion air flow and natural gas flow, furnace temperature, flue gas temperature and some important manipulated variables. For control scheme, a two-layer model predictive control which consists of steady state target calculation and dynamic optimization is developed to track the optimal operating conditions. In steady state target calculation layer, a priority strategy is proposed based on the different importance of controlled variables to make the steady state targets more reasonably. In dynamic optimization layer, a quadratic objective function is defined in terms of tracking both the optimal steady-state of controlled variables and manipulated variables. The method is successfully carried out in F1 aluminum melting furnace of a company in Tianjin. Compared with previous operation, the comprehensive energy consumption and the comprehensive energy consumption for unit output of product decrease 5.99% and 6.56% respectively.</description><subject>Air flow</subject><subject>Aluminum</subject><subject>Combustion</subject><subject>Continuous furnaces</subject><subject>control engineering</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Flue gas</subject><subject>Furnaces</subject><subject>Gas flow</subject><subject>Gas temperature</subject><subject>Mathematical models</subject><subject>Melting furnaces</subject><subject>Melting processing</subject><subject>Natural gas</subject><subject>Numerical simulation</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Simulation</subject><subject>Steady state</subject><subject>steady-state target calculation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctO40AQtNCutAj4glwscU523o9jZIUlEguHwHk0HveECbaHnbGR-HucdRTRl25Vd1WpVUWxwGiFMdK_11W12e1WBGG9IpoyrORFcUmw0EvKqfjxbf5V3OR8QFOpCeLysnjb9gPskx1C7Mvoy8exgxScbctd6MZ2xm3flFXshxQn2L1CB6WPqdz0kPafx02G9HGWWLdjF_qxK_9CO4R-X96NqbcO8nXx09s2w82pXxUvd5vn6n758PRnW60flo4hNSwFroUiSGKvbVNL2nAmWAMgcc2dYk5g5xtVa9Y4iwQlBLxrhKVecIG4l_Sq2M66TbQH855CZ9OniTaY_0BMe2PTEFwLRk4WnnsvwGLmEFNOCu-ElZ6IWjI_ad3OWu8p_hshD-YQj--02RDGOdeCKD5d0fnKpZhzAn92xcgcQzJzSOYYkjmFNLEWMysAwJmhpKZYafoFXWCPPw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Guo, Na</creator><creator>Zheng, Hongyu</creator><creator>Zou, Tao</creator><creator>Jia, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9556-0451</orcidid></search><sort><creationdate>2019</creationdate><title>Integration of Numerical Simulation and Control Scheme for Energy Conservation of Aluminum Melting Furnaces</title><author>Guo, Na ; Zheng, Hongyu ; Zou, Tao ; Jia, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-61b682071f9adb73d5464dee71b5c84c61cfd8b94dca06322efcd6a3f65605f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air flow</topic><topic>Aluminum</topic><topic>Combustion</topic><topic>Continuous furnaces</topic><topic>control engineering</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Flue gas</topic><topic>Furnaces</topic><topic>Gas flow</topic><topic>Gas temperature</topic><topic>Mathematical models</topic><topic>Melting furnaces</topic><topic>Melting processing</topic><topic>Natural gas</topic><topic>Numerical simulation</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Simulation</topic><topic>Steady state</topic><topic>steady-state target calculation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Na</creatorcontrib><creatorcontrib>Zheng, Hongyu</creatorcontrib><creatorcontrib>Zou, Tao</creatorcontrib><creatorcontrib>Jia, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Na</au><au>Zheng, Hongyu</au><au>Zou, Tao</au><au>Jia, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of Numerical Simulation and Control Scheme for Energy Conservation of Aluminum Melting Furnaces</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>114659</spage><epage>114669</epage><pages>114659-114669</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Aluminum melting process is a semi-continuous process with high-energy consumption. In this paper, a software-based strategy which considers numerical simulation and control scheme simultaneously is employed to improve energy consumption of aluminum melting furnaces without changing the hardware. For numerical simulation, a nonlinear steady-state optimization is performed offline to obtain optimal operating points. Extensively, the optimal operating conditions include not only product exit temperature, but also ratio of combustion air flow and natural gas flow, furnace temperature, flue gas temperature and some important manipulated variables. For control scheme, a two-layer model predictive control which consists of steady state target calculation and dynamic optimization is developed to track the optimal operating conditions. In steady state target calculation layer, a priority strategy is proposed based on the different importance of controlled variables to make the steady state targets more reasonably. In dynamic optimization layer, a quadratic objective function is defined in terms of tracking both the optimal steady-state of controlled variables and manipulated variables. The method is successfully carried out in F1 aluminum melting furnace of a company in Tianjin. Compared with previous operation, the comprehensive energy consumption and the comprehensive energy consumption for unit output of product decrease 5.99% and 6.56% respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2934187</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9556-0451</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.114659-114669
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2934187
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Air flow
Aluminum
Combustion
Continuous furnaces
control engineering
Energy conservation
Energy consumption
Flue gas
Furnaces
Gas flow
Gas temperature
Mathematical models
Melting furnaces
Melting processing
Natural gas
Numerical simulation
Optimization
Predictive control
Simulation
Steady state
steady-state target calculation
title Integration of Numerical Simulation and Control Scheme for Energy Conservation of Aluminum Melting Furnaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20Numerical%20Simulation%20and%20Control%20Scheme%20for%20Energy%20Conservation%20of%20Aluminum%20Melting%20Furnaces&rft.jtitle=IEEE%20access&rft.au=Guo,%20Na&rft.date=2019&rft.volume=7&rft.spage=114659&rft.epage=114669&rft.pages=114659-114669&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2934187&rft_dat=%3Cproquest_cross%3E2455596285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455596285&rft_id=info:pmid/&rft_ieee_id=8793189&rft_doaj_id=oai_doaj_org_article_79adf5ff6ea14c048c76fc6a7f26b74f&rfr_iscdi=true