Integration of Numerical Simulation and Control Scheme for Energy Conservation of Aluminum Melting Furnaces
Aluminum melting process is a semi-continuous process with high-energy consumption. In this paper, a software-based strategy which considers numerical simulation and control scheme simultaneously is employed to improve energy consumption of aluminum melting furnaces without changing the hardware. Fo...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.114659-114669 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 114669 |
---|---|
container_issue | |
container_start_page | 114659 |
container_title | IEEE access |
container_volume | 7 |
creator | Guo, Na Zheng, Hongyu Zou, Tao Jia, Yang |
description | Aluminum melting process is a semi-continuous process with high-energy consumption. In this paper, a software-based strategy which considers numerical simulation and control scheme simultaneously is employed to improve energy consumption of aluminum melting furnaces without changing the hardware. For numerical simulation, a nonlinear steady-state optimization is performed offline to obtain optimal operating points. Extensively, the optimal operating conditions include not only product exit temperature, but also ratio of combustion air flow and natural gas flow, furnace temperature, flue gas temperature and some important manipulated variables. For control scheme, a two-layer model predictive control which consists of steady state target calculation and dynamic optimization is developed to track the optimal operating conditions. In steady state target calculation layer, a priority strategy is proposed based on the different importance of controlled variables to make the steady state targets more reasonably. In dynamic optimization layer, a quadratic objective function is defined in terms of tracking both the optimal steady-state of controlled variables and manipulated variables. The method is successfully carried out in F1 aluminum melting furnace of a company in Tianjin. Compared with previous operation, the comprehensive energy consumption and the comprehensive energy consumption for unit output of product decrease 5.99% and 6.56% respectively. |
doi_str_mv | 10.1109/ACCESS.2019.2934187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2934187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8793189</ieee_id><doaj_id>oai_doaj_org_article_79adf5ff6ea14c048c76fc6a7f26b74f</doaj_id><sourcerecordid>2455596285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-61b682071f9adb73d5464dee71b5c84c61cfd8b94dca06322efcd6a3f65605f73</originalsourceid><addsrcrecordid>eNpNUctO40AQtNCutAj4glwscU523o9jZIUlEguHwHk0HveECbaHnbGR-HucdRTRl25Vd1WpVUWxwGiFMdK_11W12e1WBGG9IpoyrORFcUmw0EvKqfjxbf5V3OR8QFOpCeLysnjb9gPskx1C7Mvoy8exgxScbctd6MZ2xm3flFXshxQn2L1CB6WPqdz0kPafx02G9HGWWLdjF_qxK_9CO4R-X96NqbcO8nXx09s2w82pXxUvd5vn6n758PRnW60flo4hNSwFroUiSGKvbVNL2nAmWAMgcc2dYk5g5xtVa9Y4iwQlBLxrhKVecIG4l_Sq2M66TbQH855CZ9OniTaY_0BMe2PTEFwLRk4WnnsvwGLmEFNOCu-ElZ6IWjI_ad3OWu8p_hshD-YQj--02RDGOdeCKD5d0fnKpZhzAn92xcgcQzJzSOYYkjmFNLEWMysAwJmhpKZYafoFXWCPPw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455596285</pqid></control><display><type>article</type><title>Integration of Numerical Simulation and Control Scheme for Energy Conservation of Aluminum Melting Furnaces</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Guo, Na ; Zheng, Hongyu ; Zou, Tao ; Jia, Yang</creator><creatorcontrib>Guo, Na ; Zheng, Hongyu ; Zou, Tao ; Jia, Yang</creatorcontrib><description>Aluminum melting process is a semi-continuous process with high-energy consumption. In this paper, a software-based strategy which considers numerical simulation and control scheme simultaneously is employed to improve energy consumption of aluminum melting furnaces without changing the hardware. For numerical simulation, a nonlinear steady-state optimization is performed offline to obtain optimal operating points. Extensively, the optimal operating conditions include not only product exit temperature, but also ratio of combustion air flow and natural gas flow, furnace temperature, flue gas temperature and some important manipulated variables. For control scheme, a two-layer model predictive control which consists of steady state target calculation and dynamic optimization is developed to track the optimal operating conditions. In steady state target calculation layer, a priority strategy is proposed based on the different importance of controlled variables to make the steady state targets more reasonably. In dynamic optimization layer, a quadratic objective function is defined in terms of tracking both the optimal steady-state of controlled variables and manipulated variables. The method is successfully carried out in F1 aluminum melting furnace of a company in Tianjin. Compared with previous operation, the comprehensive energy consumption and the comprehensive energy consumption for unit output of product decrease 5.99% and 6.56% respectively.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2934187</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Air flow ; Aluminum ; Combustion ; Continuous furnaces ; control engineering ; Energy conservation ; Energy consumption ; Flue gas ; Furnaces ; Gas flow ; Gas temperature ; Mathematical models ; Melting furnaces ; Melting processing ; Natural gas ; Numerical simulation ; Optimization ; Predictive control ; Simulation ; Steady state ; steady-state target calculation</subject><ispartof>IEEE access, 2019, Vol.7, p.114659-114669</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-61b682071f9adb73d5464dee71b5c84c61cfd8b94dca06322efcd6a3f65605f73</citedby><cites>FETCH-LOGICAL-c408t-61b682071f9adb73d5464dee71b5c84c61cfd8b94dca06322efcd6a3f65605f73</cites><orcidid>0000-0002-9556-0451</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8793189$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Guo, Na</creatorcontrib><creatorcontrib>Zheng, Hongyu</creatorcontrib><creatorcontrib>Zou, Tao</creatorcontrib><creatorcontrib>Jia, Yang</creatorcontrib><title>Integration of Numerical Simulation and Control Scheme for Energy Conservation of Aluminum Melting Furnaces</title><title>IEEE access</title><addtitle>Access</addtitle><description>Aluminum melting process is a semi-continuous process with high-energy consumption. In this paper, a software-based strategy which considers numerical simulation and control scheme simultaneously is employed to improve energy consumption of aluminum melting furnaces without changing the hardware. For numerical simulation, a nonlinear steady-state optimization is performed offline to obtain optimal operating points. Extensively, the optimal operating conditions include not only product exit temperature, but also ratio of combustion air flow and natural gas flow, furnace temperature, flue gas temperature and some important manipulated variables. For control scheme, a two-layer model predictive control which consists of steady state target calculation and dynamic optimization is developed to track the optimal operating conditions. In steady state target calculation layer, a priority strategy is proposed based on the different importance of controlled variables to make the steady state targets more reasonably. In dynamic optimization layer, a quadratic objective function is defined in terms of tracking both the optimal steady-state of controlled variables and manipulated variables. The method is successfully carried out in F1 aluminum melting furnace of a company in Tianjin. Compared with previous operation, the comprehensive energy consumption and the comprehensive energy consumption for unit output of product decrease 5.99% and 6.56% respectively.</description><subject>Air flow</subject><subject>Aluminum</subject><subject>Combustion</subject><subject>Continuous furnaces</subject><subject>control engineering</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Flue gas</subject><subject>Furnaces</subject><subject>Gas flow</subject><subject>Gas temperature</subject><subject>Mathematical models</subject><subject>Melting furnaces</subject><subject>Melting processing</subject><subject>Natural gas</subject><subject>Numerical simulation</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Simulation</subject><subject>Steady state</subject><subject>steady-state target calculation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctO40AQtNCutAj4glwscU523o9jZIUlEguHwHk0HveECbaHnbGR-HucdRTRl25Vd1WpVUWxwGiFMdK_11W12e1WBGG9IpoyrORFcUmw0EvKqfjxbf5V3OR8QFOpCeLysnjb9gPskx1C7Mvoy8exgxScbctd6MZ2xm3flFXshxQn2L1CB6WPqdz0kPafx02G9HGWWLdjF_qxK_9CO4R-X96NqbcO8nXx09s2w82pXxUvd5vn6n758PRnW60flo4hNSwFroUiSGKvbVNL2nAmWAMgcc2dYk5g5xtVa9Y4iwQlBLxrhKVecIG4l_Sq2M66TbQH855CZ9OniTaY_0BMe2PTEFwLRk4WnnsvwGLmEFNOCu-ElZ6IWjI_ad3OWu8p_hshD-YQj--02RDGOdeCKD5d0fnKpZhzAn92xcgcQzJzSOYYkjmFNLEWMysAwJmhpKZYafoFXWCPPw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Guo, Na</creator><creator>Zheng, Hongyu</creator><creator>Zou, Tao</creator><creator>Jia, Yang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9556-0451</orcidid></search><sort><creationdate>2019</creationdate><title>Integration of Numerical Simulation and Control Scheme for Energy Conservation of Aluminum Melting Furnaces</title><author>Guo, Na ; Zheng, Hongyu ; Zou, Tao ; Jia, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-61b682071f9adb73d5464dee71b5c84c61cfd8b94dca06322efcd6a3f65605f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air flow</topic><topic>Aluminum</topic><topic>Combustion</topic><topic>Continuous furnaces</topic><topic>control engineering</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Flue gas</topic><topic>Furnaces</topic><topic>Gas flow</topic><topic>Gas temperature</topic><topic>Mathematical models</topic><topic>Melting furnaces</topic><topic>Melting processing</topic><topic>Natural gas</topic><topic>Numerical simulation</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Simulation</topic><topic>Steady state</topic><topic>steady-state target calculation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Na</creatorcontrib><creatorcontrib>Zheng, Hongyu</creatorcontrib><creatorcontrib>Zou, Tao</creatorcontrib><creatorcontrib>Jia, Yang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Na</au><au>Zheng, Hongyu</au><au>Zou, Tao</au><au>Jia, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of Numerical Simulation and Control Scheme for Energy Conservation of Aluminum Melting Furnaces</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>114659</spage><epage>114669</epage><pages>114659-114669</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Aluminum melting process is a semi-continuous process with high-energy consumption. In this paper, a software-based strategy which considers numerical simulation and control scheme simultaneously is employed to improve energy consumption of aluminum melting furnaces without changing the hardware. For numerical simulation, a nonlinear steady-state optimization is performed offline to obtain optimal operating points. Extensively, the optimal operating conditions include not only product exit temperature, but also ratio of combustion air flow and natural gas flow, furnace temperature, flue gas temperature and some important manipulated variables. For control scheme, a two-layer model predictive control which consists of steady state target calculation and dynamic optimization is developed to track the optimal operating conditions. In steady state target calculation layer, a priority strategy is proposed based on the different importance of controlled variables to make the steady state targets more reasonably. In dynamic optimization layer, a quadratic objective function is defined in terms of tracking both the optimal steady-state of controlled variables and manipulated variables. The method is successfully carried out in F1 aluminum melting furnace of a company in Tianjin. Compared with previous operation, the comprehensive energy consumption and the comprehensive energy consumption for unit output of product decrease 5.99% and 6.56% respectively.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2934187</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9556-0451</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.114659-114669 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2019_2934187 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Air flow Aluminum Combustion Continuous furnaces control engineering Energy conservation Energy consumption Flue gas Furnaces Gas flow Gas temperature Mathematical models Melting furnaces Melting processing Natural gas Numerical simulation Optimization Predictive control Simulation Steady state steady-state target calculation |
title | Integration of Numerical Simulation and Control Scheme for Energy Conservation of Aluminum Melting Furnaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20Numerical%20Simulation%20and%20Control%20Scheme%20for%20Energy%20Conservation%20of%20Aluminum%20Melting%20Furnaces&rft.jtitle=IEEE%20access&rft.au=Guo,%20Na&rft.date=2019&rft.volume=7&rft.spage=114659&rft.epage=114669&rft.pages=114659-114669&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2934187&rft_dat=%3Cproquest_cross%3E2455596285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455596285&rft_id=info:pmid/&rft_ieee_id=8793189&rft_doaj_id=oai_doaj_org_article_79adf5ff6ea14c048c76fc6a7f26b74f&rfr_iscdi=true |