Texture-and-Shape Based Active Contour Model for Insulator Segmentation

Insulator segmentation is a critical step for automatic insulator fault diagnosis in high voltage transmission systems. Existing methods fail to segment insulators when they have a low contrast with the surroundings. Considering the unique shape and texture characteristics of insulators, a texture-a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.78706-78714
Hauptverfasser: Yu, Yajie, Cao, Hui, Wang, Zhuzhu, Li, Yuqiao, Li, Kang, Xie, Shengquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78714
container_issue
container_start_page 78706
container_title IEEE access
container_volume 7
creator Yu, Yajie
Cao, Hui
Wang, Zhuzhu
Li, Yuqiao
Li, Kang
Xie, Shengquan
description Insulator segmentation is a critical step for automatic insulator fault diagnosis in high voltage transmission systems. Existing methods fail to segment insulators when they have a low contrast with the surroundings. Considering the unique shape and texture characteristics of insulators, a texture-and-shape based active contour model is proposed for insulator segmentation. The segmentation is achieved by evolving a curve iteratively by the texture features and shape priors. In the texture-driven curve evolution, a semi-local region descriptor is used to extract the texture features of insulators and a new convex energy functional is defined based on the extracted features with the topology-preserving term. The topology-preserving term keeps the curve's topology unchanged as the curve topology is determined by the shape template. In the shape-driven curve evolution, the shape context descriptor is used to align the shape template with the current curve. The semantic transformation between the shape template and the current curve is obtained by Procrustes analysis and then adopted to update the current curve to resemble the shape prior. The proposed method is applied to a set of images, and the experimental results confirm the efficacy and effectiveness of the proposed method for segmenting insulators in cluttered backgrounds.
doi_str_mv 10.1109/ACCESS.2019.2922257
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2922257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8735702</ieee_id><doaj_id>oai_doaj_org_article_63d9ab1691664c1a877e42fa2c788395</doaj_id><sourcerecordid>2455607842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-b35429435b6132ba0a035b18f0b8a69a3f8ab90c6aeb7d823dade6840a4a2ad03</originalsourceid><addsrcrecordid>eNpNUctKxEAQDKKgqF-wl4DnrPN-HNfgY0HxsHoeOpnOmmXNrJNZ0b93NCL2pYuiq7qbKooZJXNKib1c1PX1ajVnhNo5s4wxqQ-KE0aVrbjk6vAfPi7Ox3FDcplMSX1S3D7hR9pHrGDw1eoFdlhewYi-XLSpf8eyDkMK-1g-BI_bsguxXA7jfgspoxWuX3FIkPownBVHHWxHPP_tp8XzzfVTfVfdP94u68V91QppUtVwKZgVXDaKctYAAZIxNR1pDCgLvDPQWNIqwEZ7w7gHj8oIAgIYeMJPi-Xk6wNs3C72rxA_XYDe_RAhrh3E1LdbdIp7C03-kyolWgpGaxSsA9ZqY7iV2eti8trF8LbHMblNfnXI5zsmpFREG8HyFJ-m2hjGMWL3t5US9x2AmwJw3wG43wCyajapekT8UxjNpSaMfwGKloAX</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455607842</pqid></control><display><type>article</type><title>Texture-and-Shape Based Active Contour Model for Insulator Segmentation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yu, Yajie ; Cao, Hui ; Wang, Zhuzhu ; Li, Yuqiao ; Li, Kang ; Xie, Shengquan</creator><creatorcontrib>Yu, Yajie ; Cao, Hui ; Wang, Zhuzhu ; Li, Yuqiao ; Li, Kang ; Xie, Shengquan</creatorcontrib><description>Insulator segmentation is a critical step for automatic insulator fault diagnosis in high voltage transmission systems. Existing methods fail to segment insulators when they have a low contrast with the surroundings. Considering the unique shape and texture characteristics of insulators, a texture-and-shape based active contour model is proposed for insulator segmentation. The segmentation is achieved by evolving a curve iteratively by the texture features and shape priors. In the texture-driven curve evolution, a semi-local region descriptor is used to extract the texture features of insulators and a new convex energy functional is defined based on the extracted features with the topology-preserving term. The topology-preserving term keeps the curve's topology unchanged as the curve topology is determined by the shape template. In the shape-driven curve evolution, the shape context descriptor is used to align the shape template with the current curve. The semantic transformation between the shape template and the current curve is obtained by Procrustes analysis and then adopted to update the current curve to resemble the shape prior. The proposed method is applied to a set of images, and the experimental results confirm the efficacy and effectiveness of the proposed method for segmenting insulators in cluttered backgrounds.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2922257</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Active contour model ; Active contours ; Automatic transmissions ; Contours ; Evolution ; Fault diagnosis ; Feature extraction ; Image segmentation ; insulator segmentation ; Insulators ; Level set ; Shape ; shape descriptor ; Texture ; Topology</subject><ispartof>IEEE access, 2019, Vol.7, p.78706-78714</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-b35429435b6132ba0a035b18f0b8a69a3f8ab90c6aeb7d823dade6840a4a2ad03</citedby><cites>FETCH-LOGICAL-c458t-b35429435b6132ba0a035b18f0b8a69a3f8ab90c6aeb7d823dade6840a4a2ad03</cites><orcidid>0000-0002-4985-0028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8735702$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Yu, Yajie</creatorcontrib><creatorcontrib>Cao, Hui</creatorcontrib><creatorcontrib>Wang, Zhuzhu</creatorcontrib><creatorcontrib>Li, Yuqiao</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Xie, Shengquan</creatorcontrib><title>Texture-and-Shape Based Active Contour Model for Insulator Segmentation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Insulator segmentation is a critical step for automatic insulator fault diagnosis in high voltage transmission systems. Existing methods fail to segment insulators when they have a low contrast with the surroundings. Considering the unique shape and texture characteristics of insulators, a texture-and-shape based active contour model is proposed for insulator segmentation. The segmentation is achieved by evolving a curve iteratively by the texture features and shape priors. In the texture-driven curve evolution, a semi-local region descriptor is used to extract the texture features of insulators and a new convex energy functional is defined based on the extracted features with the topology-preserving term. The topology-preserving term keeps the curve's topology unchanged as the curve topology is determined by the shape template. In the shape-driven curve evolution, the shape context descriptor is used to align the shape template with the current curve. The semantic transformation between the shape template and the current curve is obtained by Procrustes analysis and then adopted to update the current curve to resemble the shape prior. The proposed method is applied to a set of images, and the experimental results confirm the efficacy and effectiveness of the proposed method for segmenting insulators in cluttered backgrounds.</description><subject>Active contour model</subject><subject>Active contours</subject><subject>Automatic transmissions</subject><subject>Contours</subject><subject>Evolution</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>insulator segmentation</subject><subject>Insulators</subject><subject>Level set</subject><subject>Shape</subject><subject>shape descriptor</subject><subject>Texture</subject><subject>Topology</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctKxEAQDKKgqF-wl4DnrPN-HNfgY0HxsHoeOpnOmmXNrJNZ0b93NCL2pYuiq7qbKooZJXNKib1c1PX1ajVnhNo5s4wxqQ-KE0aVrbjk6vAfPi7Ox3FDcplMSX1S3D7hR9pHrGDw1eoFdlhewYi-XLSpf8eyDkMK-1g-BI_bsguxXA7jfgspoxWuX3FIkPownBVHHWxHPP_tp8XzzfVTfVfdP94u68V91QppUtVwKZgVXDaKctYAAZIxNR1pDCgLvDPQWNIqwEZ7w7gHj8oIAgIYeMJPi-Xk6wNs3C72rxA_XYDe_RAhrh3E1LdbdIp7C03-kyolWgpGaxSsA9ZqY7iV2eti8trF8LbHMblNfnXI5zsmpFREG8HyFJ-m2hjGMWL3t5US9x2AmwJw3wG43wCyajapekT8UxjNpSaMfwGKloAX</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Yu, Yajie</creator><creator>Cao, Hui</creator><creator>Wang, Zhuzhu</creator><creator>Li, Yuqiao</creator><creator>Li, Kang</creator><creator>Xie, Shengquan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4985-0028</orcidid></search><sort><creationdate>2019</creationdate><title>Texture-and-Shape Based Active Contour Model for Insulator Segmentation</title><author>Yu, Yajie ; Cao, Hui ; Wang, Zhuzhu ; Li, Yuqiao ; Li, Kang ; Xie, Shengquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-b35429435b6132ba0a035b18f0b8a69a3f8ab90c6aeb7d823dade6840a4a2ad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active contour model</topic><topic>Active contours</topic><topic>Automatic transmissions</topic><topic>Contours</topic><topic>Evolution</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>insulator segmentation</topic><topic>Insulators</topic><topic>Level set</topic><topic>Shape</topic><topic>shape descriptor</topic><topic>Texture</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yajie</creatorcontrib><creatorcontrib>Cao, Hui</creatorcontrib><creatorcontrib>Wang, Zhuzhu</creatorcontrib><creatorcontrib>Li, Yuqiao</creatorcontrib><creatorcontrib>Li, Kang</creatorcontrib><creatorcontrib>Xie, Shengquan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yajie</au><au>Cao, Hui</au><au>Wang, Zhuzhu</au><au>Li, Yuqiao</au><au>Li, Kang</au><au>Xie, Shengquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Texture-and-Shape Based Active Contour Model for Insulator Segmentation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>78706</spage><epage>78714</epage><pages>78706-78714</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Insulator segmentation is a critical step for automatic insulator fault diagnosis in high voltage transmission systems. Existing methods fail to segment insulators when they have a low contrast with the surroundings. Considering the unique shape and texture characteristics of insulators, a texture-and-shape based active contour model is proposed for insulator segmentation. The segmentation is achieved by evolving a curve iteratively by the texture features and shape priors. In the texture-driven curve evolution, a semi-local region descriptor is used to extract the texture features of insulators and a new convex energy functional is defined based on the extracted features with the topology-preserving term. The topology-preserving term keeps the curve's topology unchanged as the curve topology is determined by the shape template. In the shape-driven curve evolution, the shape context descriptor is used to align the shape template with the current curve. The semantic transformation between the shape template and the current curve is obtained by Procrustes analysis and then adopted to update the current curve to resemble the shape prior. The proposed method is applied to a set of images, and the experimental results confirm the efficacy and effectiveness of the proposed method for segmenting insulators in cluttered backgrounds.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2922257</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4985-0028</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.78706-78714
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2922257
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Active contour model
Active contours
Automatic transmissions
Contours
Evolution
Fault diagnosis
Feature extraction
Image segmentation
insulator segmentation
Insulators
Level set
Shape
shape descriptor
Texture
Topology
title Texture-and-Shape Based Active Contour Model for Insulator Segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A32%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Texture-and-Shape%20Based%20Active%20Contour%20Model%20for%20Insulator%20Segmentation&rft.jtitle=IEEE%20access&rft.au=Yu,%20Yajie&rft.date=2019&rft.volume=7&rft.spage=78706&rft.epage=78714&rft.pages=78706-78714&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2922257&rft_dat=%3Cproquest_cross%3E2455607842%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455607842&rft_id=info:pmid/&rft_ieee_id=8735702&rft_doaj_id=oai_doaj_org_article_63d9ab1691664c1a877e42fa2c788395&rfr_iscdi=true