A Novel Approach for Multi-Label Chest X-Ray Classification of Common Thorax Diseases
Chest X-ray (CXR) is one of the most common types of radiology examination for the diagnosis of thorax diseases. Computer-aided diagnosis (CAD) was developed to help radiologists to achieve diagnostic excellence in a short period of time and to enhance patient healthcare. In this paper, we seek to i...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.64279-64288 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64288 |
---|---|
container_issue | |
container_start_page | 64279 |
container_title | IEEE access |
container_volume | 7 |
creator | Allaouzi, Imane Ben Ahmed, Mohamed |
description | Chest X-ray (CXR) is one of the most common types of radiology examination for the diagnosis of thorax diseases. Computer-aided diagnosis (CAD) was developed to help radiologists to achieve diagnostic excellence in a short period of time and to enhance patient healthcare. In this paper, we seek to improve the performance of the CAD system in the task of thorax diseases diagnosis by providing a new method that combines the advantages of CNN models in image feature extraction with those of the problem transformation methods in the multi-label classification task. The experimental study is tested on two publicly available CXR datasets ChestX-ray14 (frontal view) and CheXpert (frontal and lateral views). The results show that our proposed method outperformed the current state of the art. |
doi_str_mv | 10.1109/ACCESS.2019.2916849 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2916849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8719904</ieee_id><doaj_id>oai_doaj_org_article_ead3c9489d064692a012c7ade9fed87a</doaj_id><sourcerecordid>2455614158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1485db7c67a52937c5375ed3dad9ac92f0a21dfa30b9be3a854b2789a3f84f653</originalsourceid><addsrcrecordid>eNpNUdtKJDEQbURBUb_Al8A-95hrJ3kcWndXGHdhVfAtVOeyk6HHjEmPrH9vtEW2XqqoqnPqcprmguAFIVhfLvv--u5uQTHRC6pJp7g-aE4o6XTLBOsO_4uPm_NSNriaqikhT5qHJfqVXvyIlrtdTmDXKKSMbvfjFNsVDLXQr32Z0GP7B15RP0IpMUQLU0xPKAXUp-22RvfrlOEfuorFQ_HlrDkKMBZ__ulPm4fv1_f9z3b1-8dNv1y1lmM1tYQr4QZpOwmCaiatYFJ4xxw4DVbTgIESF4DhQQ-egRJ8oFJpYEHx0Al22tzMvC7Bxuxy3EJ-NQmi-Uik_NdAnqIdvfHgmNVcaYc73mkKmFArwXkdvFMSKte3mav-4XlfbzabtM9PdX1DuRAd4USo2sXmLptTKdmHr6kEm3c5zCyHeZfDfMpRURczKnrvvxBKEq0xZ28fq4Uz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455614158</pqid></control><display><type>article</type><title>A Novel Approach for Multi-Label Chest X-Ray Classification of Common Thorax Diseases</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Allaouzi, Imane ; Ben Ahmed, Mohamed</creator><creatorcontrib>Allaouzi, Imane ; Ben Ahmed, Mohamed</creatorcontrib><description>Chest X-ray (CXR) is one of the most common types of radiology examination for the diagnosis of thorax diseases. Computer-aided diagnosis (CAD) was developed to help radiologists to achieve diagnostic excellence in a short period of time and to enhance patient healthcare. In this paper, we seek to improve the performance of the CAD system in the task of thorax diseases diagnosis by providing a new method that combines the advantages of CNN models in image feature extraction with those of the problem transformation methods in the multi-label classification task. The experimental study is tested on two publicly available CXR datasets ChestX-ray14 (frontal view) and CheXpert (frontal and lateral views). The results show that our proposed method outperformed the current state of the art.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2916849</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biomedical imaging ; CAD ; Chest ; Classification ; CNN ; computer vision ; CXR ; deep learning ; Diagnosis ; Diagnostic systems ; Diseases ; Feature extraction ; Image classification ; image feature extraction ; multi-label classification ; problem transformation method ; Radiology ; Solid modeling ; Task analysis ; thoracic pathologies ; Thorax ; transfer learning</subject><ispartof>IEEE access, 2019, Vol.7, p.64279-64288</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1485db7c67a52937c5375ed3dad9ac92f0a21dfa30b9be3a854b2789a3f84f653</citedby><cites>FETCH-LOGICAL-c408t-1485db7c67a52937c5375ed3dad9ac92f0a21dfa30b9be3a854b2789a3f84f653</cites><orcidid>0000-0002-8737-8115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8719904$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Allaouzi, Imane</creatorcontrib><creatorcontrib>Ben Ahmed, Mohamed</creatorcontrib><title>A Novel Approach for Multi-Label Chest X-Ray Classification of Common Thorax Diseases</title><title>IEEE access</title><addtitle>Access</addtitle><description>Chest X-ray (CXR) is one of the most common types of radiology examination for the diagnosis of thorax diseases. Computer-aided diagnosis (CAD) was developed to help radiologists to achieve diagnostic excellence in a short period of time and to enhance patient healthcare. In this paper, we seek to improve the performance of the CAD system in the task of thorax diseases diagnosis by providing a new method that combines the advantages of CNN models in image feature extraction with those of the problem transformation methods in the multi-label classification task. The experimental study is tested on two publicly available CXR datasets ChestX-ray14 (frontal view) and CheXpert (frontal and lateral views). The results show that our proposed method outperformed the current state of the art.</description><subject>Biomedical imaging</subject><subject>CAD</subject><subject>Chest</subject><subject>Classification</subject><subject>CNN</subject><subject>computer vision</subject><subject>CXR</subject><subject>deep learning</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>image feature extraction</subject><subject>multi-label classification</subject><subject>problem transformation method</subject><subject>Radiology</subject><subject>Solid modeling</subject><subject>Task analysis</subject><subject>thoracic pathologies</subject><subject>Thorax</subject><subject>transfer learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKJDEQbURBUb_Al8A-95hrJ3kcWndXGHdhVfAtVOeyk6HHjEmPrH9vtEW2XqqoqnPqcprmguAFIVhfLvv--u5uQTHRC6pJp7g-aE4o6XTLBOsO_4uPm_NSNriaqikhT5qHJfqVXvyIlrtdTmDXKKSMbvfjFNsVDLXQr32Z0GP7B15RP0IpMUQLU0xPKAXUp-22RvfrlOEfuorFQ_HlrDkKMBZ__ulPm4fv1_f9z3b1-8dNv1y1lmM1tYQr4QZpOwmCaiatYFJ4xxw4DVbTgIESF4DhQQ-egRJ8oFJpYEHx0Al22tzMvC7Bxuxy3EJ-NQmi-Uik_NdAnqIdvfHgmNVcaYc73mkKmFArwXkdvFMSKte3mav-4XlfbzabtM9PdX1DuRAd4USo2sXmLptTKdmHr6kEm3c5zCyHeZfDfMpRURczKnrvvxBKEq0xZ28fq4Uz</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Allaouzi, Imane</creator><creator>Ben Ahmed, Mohamed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8737-8115</orcidid></search><sort><creationdate>2019</creationdate><title>A Novel Approach for Multi-Label Chest X-Ray Classification of Common Thorax Diseases</title><author>Allaouzi, Imane ; Ben Ahmed, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1485db7c67a52937c5375ed3dad9ac92f0a21dfa30b9be3a854b2789a3f84f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomedical imaging</topic><topic>CAD</topic><topic>Chest</topic><topic>Classification</topic><topic>CNN</topic><topic>computer vision</topic><topic>CXR</topic><topic>deep learning</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>image feature extraction</topic><topic>multi-label classification</topic><topic>problem transformation method</topic><topic>Radiology</topic><topic>Solid modeling</topic><topic>Task analysis</topic><topic>thoracic pathologies</topic><topic>Thorax</topic><topic>transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allaouzi, Imane</creatorcontrib><creatorcontrib>Ben Ahmed, Mohamed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allaouzi, Imane</au><au>Ben Ahmed, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Approach for Multi-Label Chest X-Ray Classification of Common Thorax Diseases</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>64279</spage><epage>64288</epage><pages>64279-64288</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Chest X-ray (CXR) is one of the most common types of radiology examination for the diagnosis of thorax diseases. Computer-aided diagnosis (CAD) was developed to help radiologists to achieve diagnostic excellence in a short period of time and to enhance patient healthcare. In this paper, we seek to improve the performance of the CAD system in the task of thorax diseases diagnosis by providing a new method that combines the advantages of CNN models in image feature extraction with those of the problem transformation methods in the multi-label classification task. The experimental study is tested on two publicly available CXR datasets ChestX-ray14 (frontal view) and CheXpert (frontal and lateral views). The results show that our proposed method outperformed the current state of the art.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2916849</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8737-8115</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.64279-64288 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2019_2916849 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Biomedical imaging CAD Chest Classification CNN computer vision CXR deep learning Diagnosis Diagnostic systems Diseases Feature extraction Image classification image feature extraction multi-label classification problem transformation method Radiology Solid modeling Task analysis thoracic pathologies Thorax transfer learning |
title | A Novel Approach for Multi-Label Chest X-Ray Classification of Common Thorax Diseases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Approach%20for%20Multi-Label%20Chest%20X-Ray%20Classification%20of%20Common%20Thorax%20Diseases&rft.jtitle=IEEE%20access&rft.au=Allaouzi,%20Imane&rft.date=2019&rft.volume=7&rft.spage=64279&rft.epage=64288&rft.pages=64279-64288&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2916849&rft_dat=%3Cproquest_cross%3E2455614158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455614158&rft_id=info:pmid/&rft_ieee_id=8719904&rft_doaj_id=oai_doaj_org_article_ead3c9489d064692a012c7ade9fed87a&rfr_iscdi=true |