A Novel Approach for Multi-Label Chest X-Ray Classification of Common Thorax Diseases

Chest X-ray (CXR) is one of the most common types of radiology examination for the diagnosis of thorax diseases. Computer-aided diagnosis (CAD) was developed to help radiologists to achieve diagnostic excellence in a short period of time and to enhance patient healthcare. In this paper, we seek to i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.64279-64288
Hauptverfasser: Allaouzi, Imane, Ben Ahmed, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64288
container_issue
container_start_page 64279
container_title IEEE access
container_volume 7
creator Allaouzi, Imane
Ben Ahmed, Mohamed
description Chest X-ray (CXR) is one of the most common types of radiology examination for the diagnosis of thorax diseases. Computer-aided diagnosis (CAD) was developed to help radiologists to achieve diagnostic excellence in a short period of time and to enhance patient healthcare. In this paper, we seek to improve the performance of the CAD system in the task of thorax diseases diagnosis by providing a new method that combines the advantages of CNN models in image feature extraction with those of the problem transformation methods in the multi-label classification task. The experimental study is tested on two publicly available CXR datasets ChestX-ray14 (frontal view) and CheXpert (frontal and lateral views). The results show that our proposed method outperformed the current state of the art.
doi_str_mv 10.1109/ACCESS.2019.2916849
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2916849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8719904</ieee_id><doaj_id>oai_doaj_org_article_ead3c9489d064692a012c7ade9fed87a</doaj_id><sourcerecordid>2455614158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1485db7c67a52937c5375ed3dad9ac92f0a21dfa30b9be3a854b2789a3f84f653</originalsourceid><addsrcrecordid>eNpNUdtKJDEQbURBUb_Al8A-95hrJ3kcWndXGHdhVfAtVOeyk6HHjEmPrH9vtEW2XqqoqnPqcprmguAFIVhfLvv--u5uQTHRC6pJp7g-aE4o6XTLBOsO_4uPm_NSNriaqikhT5qHJfqVXvyIlrtdTmDXKKSMbvfjFNsVDLXQr32Z0GP7B15RP0IpMUQLU0xPKAXUp-22RvfrlOEfuorFQ_HlrDkKMBZ__ulPm4fv1_f9z3b1-8dNv1y1lmM1tYQr4QZpOwmCaiatYFJ4xxw4DVbTgIESF4DhQQ-egRJ8oFJpYEHx0Al22tzMvC7Bxuxy3EJ-NQmi-Uik_NdAnqIdvfHgmNVcaYc73mkKmFArwXkdvFMSKte3mav-4XlfbzabtM9PdX1DuRAd4USo2sXmLptTKdmHr6kEm3c5zCyHeZfDfMpRURczKnrvvxBKEq0xZ28fq4Uz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455614158</pqid></control><display><type>article</type><title>A Novel Approach for Multi-Label Chest X-Ray Classification of Common Thorax Diseases</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Allaouzi, Imane ; Ben Ahmed, Mohamed</creator><creatorcontrib>Allaouzi, Imane ; Ben Ahmed, Mohamed</creatorcontrib><description>Chest X-ray (CXR) is one of the most common types of radiology examination for the diagnosis of thorax diseases. Computer-aided diagnosis (CAD) was developed to help radiologists to achieve diagnostic excellence in a short period of time and to enhance patient healthcare. In this paper, we seek to improve the performance of the CAD system in the task of thorax diseases diagnosis by providing a new method that combines the advantages of CNN models in image feature extraction with those of the problem transformation methods in the multi-label classification task. The experimental study is tested on two publicly available CXR datasets ChestX-ray14 (frontal view) and CheXpert (frontal and lateral views). The results show that our proposed method outperformed the current state of the art.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2916849</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biomedical imaging ; CAD ; Chest ; Classification ; CNN ; computer vision ; CXR ; deep learning ; Diagnosis ; Diagnostic systems ; Diseases ; Feature extraction ; Image classification ; image feature extraction ; multi-label classification ; problem transformation method ; Radiology ; Solid modeling ; Task analysis ; thoracic pathologies ; Thorax ; transfer learning</subject><ispartof>IEEE access, 2019, Vol.7, p.64279-64288</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1485db7c67a52937c5375ed3dad9ac92f0a21dfa30b9be3a854b2789a3f84f653</citedby><cites>FETCH-LOGICAL-c408t-1485db7c67a52937c5375ed3dad9ac92f0a21dfa30b9be3a854b2789a3f84f653</cites><orcidid>0000-0002-8737-8115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8719904$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Allaouzi, Imane</creatorcontrib><creatorcontrib>Ben Ahmed, Mohamed</creatorcontrib><title>A Novel Approach for Multi-Label Chest X-Ray Classification of Common Thorax Diseases</title><title>IEEE access</title><addtitle>Access</addtitle><description>Chest X-ray (CXR) is one of the most common types of radiology examination for the diagnosis of thorax diseases. Computer-aided diagnosis (CAD) was developed to help radiologists to achieve diagnostic excellence in a short period of time and to enhance patient healthcare. In this paper, we seek to improve the performance of the CAD system in the task of thorax diseases diagnosis by providing a new method that combines the advantages of CNN models in image feature extraction with those of the problem transformation methods in the multi-label classification task. The experimental study is tested on two publicly available CXR datasets ChestX-ray14 (frontal view) and CheXpert (frontal and lateral views). The results show that our proposed method outperformed the current state of the art.</description><subject>Biomedical imaging</subject><subject>CAD</subject><subject>Chest</subject><subject>Classification</subject><subject>CNN</subject><subject>computer vision</subject><subject>CXR</subject><subject>deep learning</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>Image classification</subject><subject>image feature extraction</subject><subject>multi-label classification</subject><subject>problem transformation method</subject><subject>Radiology</subject><subject>Solid modeling</subject><subject>Task analysis</subject><subject>thoracic pathologies</subject><subject>Thorax</subject><subject>transfer learning</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdtKJDEQbURBUb_Al8A-95hrJ3kcWndXGHdhVfAtVOeyk6HHjEmPrH9vtEW2XqqoqnPqcprmguAFIVhfLvv--u5uQTHRC6pJp7g-aE4o6XTLBOsO_4uPm_NSNriaqikhT5qHJfqVXvyIlrtdTmDXKKSMbvfjFNsVDLXQr32Z0GP7B15RP0IpMUQLU0xPKAXUp-22RvfrlOEfuorFQ_HlrDkKMBZ__ulPm4fv1_f9z3b1-8dNv1y1lmM1tYQr4QZpOwmCaiatYFJ4xxw4DVbTgIESF4DhQQ-egRJ8oFJpYEHx0Al22tzMvC7Bxuxy3EJ-NQmi-Uik_NdAnqIdvfHgmNVcaYc73mkKmFArwXkdvFMSKte3mav-4XlfbzabtM9PdX1DuRAd4USo2sXmLptTKdmHr6kEm3c5zCyHeZfDfMpRURczKnrvvxBKEq0xZ28fq4Uz</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Allaouzi, Imane</creator><creator>Ben Ahmed, Mohamed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8737-8115</orcidid></search><sort><creationdate>2019</creationdate><title>A Novel Approach for Multi-Label Chest X-Ray Classification of Common Thorax Diseases</title><author>Allaouzi, Imane ; Ben Ahmed, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1485db7c67a52937c5375ed3dad9ac92f0a21dfa30b9be3a854b2789a3f84f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomedical imaging</topic><topic>CAD</topic><topic>Chest</topic><topic>Classification</topic><topic>CNN</topic><topic>computer vision</topic><topic>CXR</topic><topic>deep learning</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>Image classification</topic><topic>image feature extraction</topic><topic>multi-label classification</topic><topic>problem transformation method</topic><topic>Radiology</topic><topic>Solid modeling</topic><topic>Task analysis</topic><topic>thoracic pathologies</topic><topic>Thorax</topic><topic>transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allaouzi, Imane</creatorcontrib><creatorcontrib>Ben Ahmed, Mohamed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allaouzi, Imane</au><au>Ben Ahmed, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Approach for Multi-Label Chest X-Ray Classification of Common Thorax Diseases</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>64279</spage><epage>64288</epage><pages>64279-64288</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Chest X-ray (CXR) is one of the most common types of radiology examination for the diagnosis of thorax diseases. Computer-aided diagnosis (CAD) was developed to help radiologists to achieve diagnostic excellence in a short period of time and to enhance patient healthcare. In this paper, we seek to improve the performance of the CAD system in the task of thorax diseases diagnosis by providing a new method that combines the advantages of CNN models in image feature extraction with those of the problem transformation methods in the multi-label classification task. The experimental study is tested on two publicly available CXR datasets ChestX-ray14 (frontal view) and CheXpert (frontal and lateral views). The results show that our proposed method outperformed the current state of the art.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2916849</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8737-8115</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.64279-64288
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2916849
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Biomedical imaging
CAD
Chest
Classification
CNN
computer vision
CXR
deep learning
Diagnosis
Diagnostic systems
Diseases
Feature extraction
Image classification
image feature extraction
multi-label classification
problem transformation method
Radiology
Solid modeling
Task analysis
thoracic pathologies
Thorax
transfer learning
title A Novel Approach for Multi-Label Chest X-Ray Classification of Common Thorax Diseases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Approach%20for%20Multi-Label%20Chest%20X-Ray%20Classification%20of%20Common%20Thorax%20Diseases&rft.jtitle=IEEE%20access&rft.au=Allaouzi,%20Imane&rft.date=2019&rft.volume=7&rft.spage=64279&rft.epage=64288&rft.pages=64279-64288&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2916849&rft_dat=%3Cproquest_cross%3E2455614158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455614158&rft_id=info:pmid/&rft_ieee_id=8719904&rft_doaj_id=oai_doaj_org_article_ead3c9489d064692a012c7ade9fed87a&rfr_iscdi=true