Mechanical Faults Diagnosis of High-Voltage Circuit Breaker via Hybrid Features and Integrated Extreme Learning Machine

As key electrical equipment in the power system, the normal operation of a high-voltage circuit breaker is related to the reliability and economy of the power supply. In this paper, a mechanical fault diagnostic method for a high-voltage circuit breaker via the hybrid feature extraction and the inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.60091-60103
Hauptverfasser: Gao, Wei, Wai, Rong-Jong, Qiao, Su-Peng, Guo, Mou-Fa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60103
container_issue
container_start_page 60091
container_title IEEE access
container_volume 7
creator Gao, Wei
Wai, Rong-Jong
Qiao, Su-Peng
Guo, Mou-Fa
description As key electrical equipment in the power system, the normal operation of a high-voltage circuit breaker is related to the reliability and economy of the power supply. In this paper, a mechanical fault diagnostic method for a high-voltage circuit breaker via the hybrid feature extraction and the integrated extreme learning machine (IELM) is investigated. First, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used to decompose the vibration signal to obtain intrinsic mode functions (IMF). Then, the sub-band reconstruction of each order IMF component is performed by combining the Hilbert transform and the band-pass filter in order to obtain the time-frequency matrix. Moreover, mechanical fault feature vectors can be formed by the time-frequency entropy and the singular entropy, which are extracted by transforming the time-frequency matrix into the energy matrix and normalizing the frequency bands via the normal cumulative distribution function (NCDF). In addition, an IELM is built for the fault classification. The advantages of the proposed CEEMDAN scheme in combination with band-pass filtering can eliminate the modal aliasing, reduce the number of auxiliary noise additions, and improve the decomposition efficiency. Besides, the performance of the singular entropy normalized by the NCDF is more stable, and the IELM composed of multiple weak classifiers can solve the shortcomings of the traditional extreme learning machine. The experimental results based on measured data show the proposed method can effectively diagnose the mechanical failure via small samples of high-voltage circuit breakers.
doi_str_mv 10.1109/ACCESS.2019.2915252
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2915252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8708304</ieee_id><doaj_id>oai_doaj_org_article_8cc1a0b261aa44109b689c88f140fd57</doaj_id><sourcerecordid>2455617606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-130cf50c1b7a22bde4319002a7101ed8bb54fde01ac3510e23509009ebee6c8e3</originalsourceid><addsrcrecordid>eNpNUcFu1DAQjRBIVKVf0IslzlnGdpw4xxJ22ZW24lDgak2cSdZLGhfbAfr3pKSqmMuM3sx7M5qXZdccNpxD_eGmabZ3dxsBvN6ImiuhxKvsQvCyzqWS5ev_6rfZVYxnWEIvkKoust-3ZE84OYsj2-E8psg-ORwmH11kvmd7N5zy735MOBBrXLCzS-xjIPxBgf1yyPaPbXAd2xGmOVBkOHXsMCUaAibq2PZPCnRP7EgYJjcN7BbtyU30LnvT4xjp6jlfZt9226_NPj9--Xxobo65LUCnnEuwvQLL2wqFaDsqJK8BBFYcOHW6bVXRdwQcrVQcSEgFS7-mlqi0muRldlh1O49n8xDcPYZH49GZf4APg8GQnB3JaGs5QitKjlgUy2fbUtdW654X0HeqWrTer1oPwf-cKSZz9nOYlvONKJQqeVVCuUzJdcoGH2Og_mUrB_NkmFkNM0-GmWfDFtb1ynJE9MLQFWgJhfwL-OaRWQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455617606</pqid></control><display><type>article</type><title>Mechanical Faults Diagnosis of High-Voltage Circuit Breaker via Hybrid Features and Integrated Extreme Learning Machine</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gao, Wei ; Wai, Rong-Jong ; Qiao, Su-Peng ; Guo, Mou-Fa</creator><creatorcontrib>Gao, Wei ; Wai, Rong-Jong ; Qiao, Su-Peng ; Guo, Mou-Fa</creatorcontrib><description>As key electrical equipment in the power system, the normal operation of a high-voltage circuit breaker is related to the reliability and economy of the power supply. In this paper, a mechanical fault diagnostic method for a high-voltage circuit breaker via the hybrid feature extraction and the integrated extreme learning machine (IELM) is investigated. First, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used to decompose the vibration signal to obtain intrinsic mode functions (IMF). Then, the sub-band reconstruction of each order IMF component is performed by combining the Hilbert transform and the band-pass filter in order to obtain the time-frequency matrix. Moreover, mechanical fault feature vectors can be formed by the time-frequency entropy and the singular entropy, which are extracted by transforming the time-frequency matrix into the energy matrix and normalizing the frequency bands via the normal cumulative distribution function (NCDF). In addition, an IELM is built for the fault classification. The advantages of the proposed CEEMDAN scheme in combination with band-pass filtering can eliminate the modal aliasing, reduce the number of auxiliary noise additions, and improve the decomposition efficiency. Besides, the performance of the singular entropy normalized by the NCDF is more stable, and the IELM composed of multiple weak classifiers can solve the shortcomings of the traditional extreme learning machine. The experimental results based on measured data show the proposed method can effectively diagnose the mechanical failure via small samples of high-voltage circuit breakers.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2915252</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aliasing ; Artificial neural networks ; Bandpass filters ; Circuit breakers ; Circuit faults ; Circuit reliability ; complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) ; Diagnostic systems ; Distribution functions ; Electric equipment ; Electric power supplies ; Electric power systems ; Entropy ; Fault diagnosis ; Feature extraction ; Frequencies ; High voltages ; High-voltage circuit breaker ; Hilbert transformation ; integrated extreme learning machine (IELM) ; Machine learning ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Normalizing ; singular entropy ; Support vector machines ; Time-frequency analysis ; time-frequency entropy ; vibration signal ; Vibrations</subject><ispartof>IEEE access, 2019, Vol.7, p.60091-60103</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-130cf50c1b7a22bde4319002a7101ed8bb54fde01ac3510e23509009ebee6c8e3</citedby><cites>FETCH-LOGICAL-c408t-130cf50c1b7a22bde4319002a7101ed8bb54fde01ac3510e23509009ebee6c8e3</cites><orcidid>0000-0001-5483-7445 ; 0000-0001-9770-9419 ; 0000-0002-2358-0509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8708304$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27620,27910,27911,27912,54920</link.rule.ids></links><search><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Wai, Rong-Jong</creatorcontrib><creatorcontrib>Qiao, Su-Peng</creatorcontrib><creatorcontrib>Guo, Mou-Fa</creatorcontrib><title>Mechanical Faults Diagnosis of High-Voltage Circuit Breaker via Hybrid Features and Integrated Extreme Learning Machine</title><title>IEEE access</title><addtitle>Access</addtitle><description>As key electrical equipment in the power system, the normal operation of a high-voltage circuit breaker is related to the reliability and economy of the power supply. In this paper, a mechanical fault diagnostic method for a high-voltage circuit breaker via the hybrid feature extraction and the integrated extreme learning machine (IELM) is investigated. First, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used to decompose the vibration signal to obtain intrinsic mode functions (IMF). Then, the sub-band reconstruction of each order IMF component is performed by combining the Hilbert transform and the band-pass filter in order to obtain the time-frequency matrix. Moreover, mechanical fault feature vectors can be formed by the time-frequency entropy and the singular entropy, which are extracted by transforming the time-frequency matrix into the energy matrix and normalizing the frequency bands via the normal cumulative distribution function (NCDF). In addition, an IELM is built for the fault classification. The advantages of the proposed CEEMDAN scheme in combination with band-pass filtering can eliminate the modal aliasing, reduce the number of auxiliary noise additions, and improve the decomposition efficiency. Besides, the performance of the singular entropy normalized by the NCDF is more stable, and the IELM composed of multiple weak classifiers can solve the shortcomings of the traditional extreme learning machine. The experimental results based on measured data show the proposed method can effectively diagnose the mechanical failure via small samples of high-voltage circuit breakers.</description><subject>Aliasing</subject><subject>Artificial neural networks</subject><subject>Bandpass filters</subject><subject>Circuit breakers</subject><subject>Circuit faults</subject><subject>Circuit reliability</subject><subject>complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)</subject><subject>Diagnostic systems</subject><subject>Distribution functions</subject><subject>Electric equipment</subject><subject>Electric power supplies</subject><subject>Electric power systems</subject><subject>Entropy</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Frequencies</subject><subject>High voltages</subject><subject>High-voltage circuit breaker</subject><subject>Hilbert transformation</subject><subject>integrated extreme learning machine (IELM)</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Normalizing</subject><subject>singular entropy</subject><subject>Support vector machines</subject><subject>Time-frequency analysis</subject><subject>time-frequency entropy</subject><subject>vibration signal</subject><subject>Vibrations</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUcFu1DAQjRBIVKVf0IslzlnGdpw4xxJ22ZW24lDgak2cSdZLGhfbAfr3pKSqmMuM3sx7M5qXZdccNpxD_eGmabZ3dxsBvN6ImiuhxKvsQvCyzqWS5ev_6rfZVYxnWEIvkKoust-3ZE84OYsj2-E8psg-ORwmH11kvmd7N5zy735MOBBrXLCzS-xjIPxBgf1yyPaPbXAd2xGmOVBkOHXsMCUaAibq2PZPCnRP7EgYJjcN7BbtyU30LnvT4xjp6jlfZt9226_NPj9--Xxobo65LUCnnEuwvQLL2wqFaDsqJK8BBFYcOHW6bVXRdwQcrVQcSEgFS7-mlqi0muRldlh1O49n8xDcPYZH49GZf4APg8GQnB3JaGs5QitKjlgUy2fbUtdW654X0HeqWrTer1oPwf-cKSZz9nOYlvONKJQqeVVCuUzJdcoGH2Og_mUrB_NkmFkNM0-GmWfDFtb1ynJE9MLQFWgJhfwL-OaRWQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Gao, Wei</creator><creator>Wai, Rong-Jong</creator><creator>Qiao, Su-Peng</creator><creator>Guo, Mou-Fa</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5483-7445</orcidid><orcidid>https://orcid.org/0000-0001-9770-9419</orcidid><orcidid>https://orcid.org/0000-0002-2358-0509</orcidid></search><sort><creationdate>2019</creationdate><title>Mechanical Faults Diagnosis of High-Voltage Circuit Breaker via Hybrid Features and Integrated Extreme Learning Machine</title><author>Gao, Wei ; Wai, Rong-Jong ; Qiao, Su-Peng ; Guo, Mou-Fa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-130cf50c1b7a22bde4319002a7101ed8bb54fde01ac3510e23509009ebee6c8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aliasing</topic><topic>Artificial neural networks</topic><topic>Bandpass filters</topic><topic>Circuit breakers</topic><topic>Circuit faults</topic><topic>Circuit reliability</topic><topic>complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)</topic><topic>Diagnostic systems</topic><topic>Distribution functions</topic><topic>Electric equipment</topic><topic>Electric power supplies</topic><topic>Electric power systems</topic><topic>Entropy</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Frequencies</topic><topic>High voltages</topic><topic>High-voltage circuit breaker</topic><topic>Hilbert transformation</topic><topic>integrated extreme learning machine (IELM)</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Normalizing</topic><topic>singular entropy</topic><topic>Support vector machines</topic><topic>Time-frequency analysis</topic><topic>time-frequency entropy</topic><topic>vibration signal</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Wai, Rong-Jong</creatorcontrib><creatorcontrib>Qiao, Su-Peng</creatorcontrib><creatorcontrib>Guo, Mou-Fa</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Wei</au><au>Wai, Rong-Jong</au><au>Qiao, Su-Peng</au><au>Guo, Mou-Fa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Faults Diagnosis of High-Voltage Circuit Breaker via Hybrid Features and Integrated Extreme Learning Machine</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>60091</spage><epage>60103</epage><pages>60091-60103</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As key electrical equipment in the power system, the normal operation of a high-voltage circuit breaker is related to the reliability and economy of the power supply. In this paper, a mechanical fault diagnostic method for a high-voltage circuit breaker via the hybrid feature extraction and the integrated extreme learning machine (IELM) is investigated. First, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used to decompose the vibration signal to obtain intrinsic mode functions (IMF). Then, the sub-band reconstruction of each order IMF component is performed by combining the Hilbert transform and the band-pass filter in order to obtain the time-frequency matrix. Moreover, mechanical fault feature vectors can be formed by the time-frequency entropy and the singular entropy, which are extracted by transforming the time-frequency matrix into the energy matrix and normalizing the frequency bands via the normal cumulative distribution function (NCDF). In addition, an IELM is built for the fault classification. The advantages of the proposed CEEMDAN scheme in combination with band-pass filtering can eliminate the modal aliasing, reduce the number of auxiliary noise additions, and improve the decomposition efficiency. Besides, the performance of the singular entropy normalized by the NCDF is more stable, and the IELM composed of multiple weak classifiers can solve the shortcomings of the traditional extreme learning machine. The experimental results based on measured data show the proposed method can effectively diagnose the mechanical failure via small samples of high-voltage circuit breakers.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2915252</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5483-7445</orcidid><orcidid>https://orcid.org/0000-0001-9770-9419</orcidid><orcidid>https://orcid.org/0000-0002-2358-0509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.60091-60103
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2915252
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Aliasing
Artificial neural networks
Bandpass filters
Circuit breakers
Circuit faults
Circuit reliability
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)
Diagnostic systems
Distribution functions
Electric equipment
Electric power supplies
Electric power systems
Entropy
Fault diagnosis
Feature extraction
Frequencies
High voltages
High-voltage circuit breaker
Hilbert transformation
integrated extreme learning machine (IELM)
Machine learning
Mathematical analysis
Matrix algebra
Matrix methods
Normalizing
singular entropy
Support vector machines
Time-frequency analysis
time-frequency entropy
vibration signal
Vibrations
title Mechanical Faults Diagnosis of High-Voltage Circuit Breaker via Hybrid Features and Integrated Extreme Learning Machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Faults%20Diagnosis%20of%20High-Voltage%20Circuit%20Breaker%20via%20Hybrid%20Features%20and%20Integrated%20Extreme%20Learning%20Machine&rft.jtitle=IEEE%20access&rft.au=Gao,%20Wei&rft.date=2019&rft.volume=7&rft.spage=60091&rft.epage=60103&rft.pages=60091-60103&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2915252&rft_dat=%3Cproquest_cross%3E2455617606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455617606&rft_id=info:pmid/&rft_ieee_id=8708304&rft_doaj_id=oai_doaj_org_article_8cc1a0b261aa44109b689c88f140fd57&rfr_iscdi=true