On the Capacity and Straggler-Robustness of Distributed Secure Matrix Multiplication
Computationally efficient matrix multiplication is a fundamental requirement in various fields, including and particularly in data analytics. To do so, the computation task of large-scale matrix multiplication is typically outsourced to multiple servers. However, due to data misusage at the servers,...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.45783-45799 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45799 |
---|---|
container_issue | |
container_start_page | 45783 |
container_title | IEEE access |
container_volume | 7 |
creator | Kakar, Jaber Ebadifar, Seyedhamed Sezgin, Aydin |
description | Computationally efficient matrix multiplication is a fundamental requirement in various fields, including and particularly in data analytics. To do so, the computation task of large-scale matrix multiplication is typically outsourced to multiple servers. However, due to data misusage at the servers, security is typical of concern. In this paper, we first study the two-sided secure matrix multiplication problem, where a user is interested in the matrix product \boldsymbol A \boldsymbol B of two finite field private matrices \boldsymbol A and \boldsymbol B from an information-theoretic perspective. In this problem, the user exploits the computational resources of N servers to compute the matrix product but simultaneously tries to conceal the private matrices from the servers. Our goal is twofold: (i) to maximize the downlink communication rate, and (ii) to minimize the effective number of server observations needed to determine \boldsymbol A \boldsymbol B , while preserving security, where we allow for up to \ell \leq N servers to collude. To this end, we propose two schemes - an aligned secret sharing scheme (A3S) and a secure cross subspace alignment (SCSA) scheme. For A3S, we optimize the partitioning of matrices \boldsymbol A and \boldsymbol B in order to either optimize objective (i) or (ii) as a function of the system parameters (e.g., N and \ell ). A proposed inductive approach gives us analytical, close-to-optimal solutions for both (i) and (ii). The SCSA, on the other hand, is shown to be (rate) capacity-optimal for the general J -sided distributed secure matrix multiplication problem \prod _{j=1}^{J} \boldsymbol M_{j} |
doi_str_mv | 10.1109/ACCESS.2019.2908024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2908024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8675905</ieee_id><doaj_id>oai_doaj_org_article_73464d933d624b07b0cb1b2a78dc5dca</doaj_id><sourcerecordid>2455641371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8e7165a05195792ff6d66129344330a2715cc3cc45e3e8ea36acd7beabc6843</originalsourceid><addsrcrecordid>eNpNUU1LxTAQLKKgqL_AS8Fzn_lOe5T6CYrg8x626faZR22eSQr6741WxL3sMszMDkxRnFGyopQ0F5dte71erxihzYo1pCZM7BVHjKqm4pKr_X_3YXEa45bkqTMk9VHx8jSV6RXLFnZgXfosYerLdQqw2YwYqmffzTFNGGPph_LKxRRcNyfMHLRzwPIRMvJRPs5jcrvRWUjOTyfFwQBjxNPffVysb65f2rvq4en2vr18qKwgdapq1FRJIJLmKA0bBtUrRVnDheCcANNUWsutFRI51ghcge11h9BZVQt-XNwvrr2HrdkF9wbh03hw5gfwYWMgJGdHNJoLJfqG814x0RHdEdvRjoGueyt7C9nrfPHaBf8-Y0xm6-cw5fCGCSmVoFzTzOILywYfY8Dh7ysl5rsLs3Rhvrswv11k1dmicoj4p6iVlg2R_Au5XITw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455641371</pqid></control><display><type>article</type><title>On the Capacity and Straggler-Robustness of Distributed Secure Matrix Multiplication</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kakar, Jaber ; Ebadifar, Seyedhamed ; Sezgin, Aydin</creator><creatorcontrib>Kakar, Jaber ; Ebadifar, Seyedhamed ; Sezgin, Aydin</creatorcontrib><description><![CDATA[Computationally efficient matrix multiplication is a fundamental requirement in various fields, including and particularly in data analytics. To do so, the computation task of large-scale matrix multiplication is typically outsourced to multiple servers. However, due to data misusage at the servers, security is typical of concern. In this paper, we first study the two-sided secure matrix multiplication problem, where a user is interested in the matrix product <inline-formula> <tex-math notation="LaTeX">\boldsymbol A \boldsymbol B </tex-math></inline-formula> of two finite field private matrices <inline-formula> <tex-math notation="LaTeX">\boldsymbol A </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol B </tex-math></inline-formula> from an information-theoretic perspective. In this problem, the user exploits the computational resources of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> servers to compute the matrix product but simultaneously tries to conceal the private matrices from the servers. Our goal is twofold: (i) to maximize the downlink communication rate, and (ii) to minimize the effective number of server observations needed to determine <inline-formula> <tex-math notation="LaTeX">\boldsymbol A \boldsymbol B </tex-math></inline-formula>, while preserving security, where we allow for up to <inline-formula> <tex-math notation="LaTeX">\ell \leq N </tex-math></inline-formula> servers to collude. To this end, we propose two schemes - an aligned secret sharing scheme (A3S) and a secure cross subspace alignment (SCSA) scheme. For A3S, we optimize the partitioning of matrices <inline-formula> <tex-math notation="LaTeX">\boldsymbol A </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol B </tex-math></inline-formula> in order to either optimize objective (i) or (ii) as a function of the system parameters (e.g., <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\ell </tex-math></inline-formula>). A proposed inductive approach gives us analytical, close-to-optimal solutions for both (i) and (ii). The SCSA, on the other hand, is shown to be (rate) capacity-optimal for the general <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>-sided distributed secure matrix multiplication problem <inline-formula> <tex-math notation="LaTeX">\prod _{j=1}^{J} \boldsymbol M_{j} </tex-math></inline-formula>. We show this by developing a recursive information-theoretic upper bound (converse) on the downlink rate for the <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>-sided secure matrix multiplication problem. With respect to (i), both A3S and SCSA, significantly outperform the state-of-the-art in terms of (a) communication rate, (b) maximum tolerable number of colluding servers, and (c) computational complexity. Overall SCSA (A3S) is the preferred choice when the focus is on the downlink (uplink).]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2908024</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational complexity ; Computational modeling ; Cryptography ; Downlink ; Downlinking ; Fields (mathematics) ; Information theory ; interference alignment ; Matrix multiplication ; Multiplication ; Optimization ; Robustness (mathematics) ; secret sharing ; security ; Servers ; straggler mitigation ; Uplink ; Upper bounds</subject><ispartof>IEEE access, 2019, Vol.7, p.45783-45799</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8e7165a05195792ff6d66129344330a2715cc3cc45e3e8ea36acd7beabc6843</citedby><cites>FETCH-LOGICAL-c408t-8e7165a05195792ff6d66129344330a2715cc3cc45e3e8ea36acd7beabc6843</cites><orcidid>0000-0003-1468-5250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8675905$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Kakar, Jaber</creatorcontrib><creatorcontrib>Ebadifar, Seyedhamed</creatorcontrib><creatorcontrib>Sezgin, Aydin</creatorcontrib><title>On the Capacity and Straggler-Robustness of Distributed Secure Matrix Multiplication</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Computationally efficient matrix multiplication is a fundamental requirement in various fields, including and particularly in data analytics. To do so, the computation task of large-scale matrix multiplication is typically outsourced to multiple servers. However, due to data misusage at the servers, security is typical of concern. In this paper, we first study the two-sided secure matrix multiplication problem, where a user is interested in the matrix product <inline-formula> <tex-math notation="LaTeX">\boldsymbol A \boldsymbol B </tex-math></inline-formula> of two finite field private matrices <inline-formula> <tex-math notation="LaTeX">\boldsymbol A </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol B </tex-math></inline-formula> from an information-theoretic perspective. In this problem, the user exploits the computational resources of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> servers to compute the matrix product but simultaneously tries to conceal the private matrices from the servers. Our goal is twofold: (i) to maximize the downlink communication rate, and (ii) to minimize the effective number of server observations needed to determine <inline-formula> <tex-math notation="LaTeX">\boldsymbol A \boldsymbol B </tex-math></inline-formula>, while preserving security, where we allow for up to <inline-formula> <tex-math notation="LaTeX">\ell \leq N </tex-math></inline-formula> servers to collude. To this end, we propose two schemes - an aligned secret sharing scheme (A3S) and a secure cross subspace alignment (SCSA) scheme. For A3S, we optimize the partitioning of matrices <inline-formula> <tex-math notation="LaTeX">\boldsymbol A </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol B </tex-math></inline-formula> in order to either optimize objective (i) or (ii) as a function of the system parameters (e.g., <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\ell </tex-math></inline-formula>). A proposed inductive approach gives us analytical, close-to-optimal solutions for both (i) and (ii). The SCSA, on the other hand, is shown to be (rate) capacity-optimal for the general <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>-sided distributed secure matrix multiplication problem <inline-formula> <tex-math notation="LaTeX">\prod _{j=1}^{J} \boldsymbol M_{j} </tex-math></inline-formula>. We show this by developing a recursive information-theoretic upper bound (converse) on the downlink rate for the <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>-sided secure matrix multiplication problem. With respect to (i), both A3S and SCSA, significantly outperform the state-of-the-art in terms of (a) communication rate, (b) maximum tolerable number of colluding servers, and (c) computational complexity. Overall SCSA (A3S) is the preferred choice when the focus is on the downlink (uplink).]]></description><subject>Computational complexity</subject><subject>Computational modeling</subject><subject>Cryptography</subject><subject>Downlink</subject><subject>Downlinking</subject><subject>Fields (mathematics)</subject><subject>Information theory</subject><subject>interference alignment</subject><subject>Matrix multiplication</subject><subject>Multiplication</subject><subject>Optimization</subject><subject>Robustness (mathematics)</subject><subject>secret sharing</subject><subject>security</subject><subject>Servers</subject><subject>straggler mitigation</subject><subject>Uplink</subject><subject>Upper bounds</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LxTAQLKKgqL_AS8Fzn_lOe5T6CYrg8x626faZR22eSQr6741WxL3sMszMDkxRnFGyopQ0F5dte71erxihzYo1pCZM7BVHjKqm4pKr_X_3YXEa45bkqTMk9VHx8jSV6RXLFnZgXfosYerLdQqw2YwYqmffzTFNGGPph_LKxRRcNyfMHLRzwPIRMvJRPs5jcrvRWUjOTyfFwQBjxNPffVysb65f2rvq4en2vr18qKwgdapq1FRJIJLmKA0bBtUrRVnDheCcANNUWsutFRI51ghcge11h9BZVQt-XNwvrr2HrdkF9wbh03hw5gfwYWMgJGdHNJoLJfqG814x0RHdEdvRjoGueyt7C9nrfPHaBf8-Y0xm6-cw5fCGCSmVoFzTzOILywYfY8Dh7ysl5rsLs3Rhvrswv11k1dmicoj4p6iVlg2R_Au5XITw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kakar, Jaber</creator><creator>Ebadifar, Seyedhamed</creator><creator>Sezgin, Aydin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1468-5250</orcidid></search><sort><creationdate>2019</creationdate><title>On the Capacity and Straggler-Robustness of Distributed Secure Matrix Multiplication</title><author>Kakar, Jaber ; Ebadifar, Seyedhamed ; Sezgin, Aydin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8e7165a05195792ff6d66129344330a2715cc3cc45e3e8ea36acd7beabc6843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational complexity</topic><topic>Computational modeling</topic><topic>Cryptography</topic><topic>Downlink</topic><topic>Downlinking</topic><topic>Fields (mathematics)</topic><topic>Information theory</topic><topic>interference alignment</topic><topic>Matrix multiplication</topic><topic>Multiplication</topic><topic>Optimization</topic><topic>Robustness (mathematics)</topic><topic>secret sharing</topic><topic>security</topic><topic>Servers</topic><topic>straggler mitigation</topic><topic>Uplink</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kakar, Jaber</creatorcontrib><creatorcontrib>Ebadifar, Seyedhamed</creatorcontrib><creatorcontrib>Sezgin, Aydin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kakar, Jaber</au><au>Ebadifar, Seyedhamed</au><au>Sezgin, Aydin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Capacity and Straggler-Robustness of Distributed Secure Matrix Multiplication</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>45783</spage><epage>45799</epage><pages>45783-45799</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Computationally efficient matrix multiplication is a fundamental requirement in various fields, including and particularly in data analytics. To do so, the computation task of large-scale matrix multiplication is typically outsourced to multiple servers. However, due to data misusage at the servers, security is typical of concern. In this paper, we first study the two-sided secure matrix multiplication problem, where a user is interested in the matrix product <inline-formula> <tex-math notation="LaTeX">\boldsymbol A \boldsymbol B </tex-math></inline-formula> of two finite field private matrices <inline-formula> <tex-math notation="LaTeX">\boldsymbol A </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol B </tex-math></inline-formula> from an information-theoretic perspective. In this problem, the user exploits the computational resources of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> servers to compute the matrix product but simultaneously tries to conceal the private matrices from the servers. Our goal is twofold: (i) to maximize the downlink communication rate, and (ii) to minimize the effective number of server observations needed to determine <inline-formula> <tex-math notation="LaTeX">\boldsymbol A \boldsymbol B </tex-math></inline-formula>, while preserving security, where we allow for up to <inline-formula> <tex-math notation="LaTeX">\ell \leq N </tex-math></inline-formula> servers to collude. To this end, we propose two schemes - an aligned secret sharing scheme (A3S) and a secure cross subspace alignment (SCSA) scheme. For A3S, we optimize the partitioning of matrices <inline-formula> <tex-math notation="LaTeX">\boldsymbol A </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol B </tex-math></inline-formula> in order to either optimize objective (i) or (ii) as a function of the system parameters (e.g., <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\ell </tex-math></inline-formula>). A proposed inductive approach gives us analytical, close-to-optimal solutions for both (i) and (ii). The SCSA, on the other hand, is shown to be (rate) capacity-optimal for the general <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>-sided distributed secure matrix multiplication problem <inline-formula> <tex-math notation="LaTeX">\prod _{j=1}^{J} \boldsymbol M_{j} </tex-math></inline-formula>. We show this by developing a recursive information-theoretic upper bound (converse) on the downlink rate for the <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>-sided secure matrix multiplication problem. With respect to (i), both A3S and SCSA, significantly outperform the state-of-the-art in terms of (a) communication rate, (b) maximum tolerable number of colluding servers, and (c) computational complexity. Overall SCSA (A3S) is the preferred choice when the focus is on the downlink (uplink).]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2908024</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1468-5250</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.45783-45799 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2019_2908024 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Computational complexity Computational modeling Cryptography Downlink Downlinking Fields (mathematics) Information theory interference alignment Matrix multiplication Multiplication Optimization Robustness (mathematics) secret sharing security Servers straggler mitigation Uplink Upper bounds |
title | On the Capacity and Straggler-Robustness of Distributed Secure Matrix Multiplication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T12%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Capacity%20and%20Straggler-Robustness%20of%20Distributed%20Secure%20Matrix%20Multiplication&rft.jtitle=IEEE%20access&rft.au=Kakar,%20Jaber&rft.date=2019&rft.volume=7&rft.spage=45783&rft.epage=45799&rft.pages=45783-45799&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2908024&rft_dat=%3Cproquest_cross%3E2455641371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455641371&rft_id=info:pmid/&rft_ieee_id=8675905&rft_doaj_id=oai_doaj_org_article_73464d933d624b07b0cb1b2a78dc5dca&rfr_iscdi=true |