On the Capacity and Straggler-Robustness of Distributed Secure Matrix Multiplication

Computationally efficient matrix multiplication is a fundamental requirement in various fields, including and particularly in data analytics. To do so, the computation task of large-scale matrix multiplication is typically outsourced to multiple servers. However, due to data misusage at the servers,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.45783-45799
Hauptverfasser: Kakar, Jaber, Ebadifar, Seyedhamed, Sezgin, Aydin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45799
container_issue
container_start_page 45783
container_title IEEE access
container_volume 7
creator Kakar, Jaber
Ebadifar, Seyedhamed
Sezgin, Aydin
description Computationally efficient matrix multiplication is a fundamental requirement in various fields, including and particularly in data analytics. To do so, the computation task of large-scale matrix multiplication is typically outsourced to multiple servers. However, due to data misusage at the servers, security is typical of concern. In this paper, we first study the two-sided secure matrix multiplication problem, where a user is interested in the matrix product \boldsymbol A \boldsymbol B of two finite field private matrices \boldsymbol A and \boldsymbol B from an information-theoretic perspective. In this problem, the user exploits the computational resources of N servers to compute the matrix product but simultaneously tries to conceal the private matrices from the servers. Our goal is twofold: (i) to maximize the downlink communication rate, and (ii) to minimize the effective number of server observations needed to determine \boldsymbol A \boldsymbol B , while preserving security, where we allow for up to \ell \leq N servers to collude. To this end, we propose two schemes - an aligned secret sharing scheme (A3S) and a secure cross subspace alignment (SCSA) scheme. For A3S, we optimize the partitioning of matrices \boldsymbol A and \boldsymbol B in order to either optimize objective (i) or (ii) as a function of the system parameters (e.g., N and \ell ). A proposed inductive approach gives us analytical, close-to-optimal solutions for both (i) and (ii). The SCSA, on the other hand, is shown to be (rate) capacity-optimal for the general J -sided distributed secure matrix multiplication problem \prod _{j=1}^{J} \boldsymbol M_{j}
doi_str_mv 10.1109/ACCESS.2019.2908024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2908024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8675905</ieee_id><doaj_id>oai_doaj_org_article_73464d933d624b07b0cb1b2a78dc5dca</doaj_id><sourcerecordid>2455641371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8e7165a05195792ff6d66129344330a2715cc3cc45e3e8ea36acd7beabc6843</originalsourceid><addsrcrecordid>eNpNUU1LxTAQLKKgqL_AS8Fzn_lOe5T6CYrg8x626faZR22eSQr6741WxL3sMszMDkxRnFGyopQ0F5dte71erxihzYo1pCZM7BVHjKqm4pKr_X_3YXEa45bkqTMk9VHx8jSV6RXLFnZgXfosYerLdQqw2YwYqmffzTFNGGPph_LKxRRcNyfMHLRzwPIRMvJRPs5jcrvRWUjOTyfFwQBjxNPffVysb65f2rvq4en2vr18qKwgdapq1FRJIJLmKA0bBtUrRVnDheCcANNUWsutFRI51ghcge11h9BZVQt-XNwvrr2HrdkF9wbh03hw5gfwYWMgJGdHNJoLJfqG814x0RHdEdvRjoGueyt7C9nrfPHaBf8-Y0xm6-cw5fCGCSmVoFzTzOILywYfY8Dh7ysl5rsLs3Rhvrswv11k1dmicoj4p6iVlg2R_Au5XITw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455641371</pqid></control><display><type>article</type><title>On the Capacity and Straggler-Robustness of Distributed Secure Matrix Multiplication</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kakar, Jaber ; Ebadifar, Seyedhamed ; Sezgin, Aydin</creator><creatorcontrib>Kakar, Jaber ; Ebadifar, Seyedhamed ; Sezgin, Aydin</creatorcontrib><description><![CDATA[Computationally efficient matrix multiplication is a fundamental requirement in various fields, including and particularly in data analytics. To do so, the computation task of large-scale matrix multiplication is typically outsourced to multiple servers. However, due to data misusage at the servers, security is typical of concern. In this paper, we first study the two-sided secure matrix multiplication problem, where a user is interested in the matrix product <inline-formula> <tex-math notation="LaTeX">\boldsymbol A \boldsymbol B </tex-math></inline-formula> of two finite field private matrices <inline-formula> <tex-math notation="LaTeX">\boldsymbol A </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol B </tex-math></inline-formula> from an information-theoretic perspective. In this problem, the user exploits the computational resources of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> servers to compute the matrix product but simultaneously tries to conceal the private matrices from the servers. Our goal is twofold: (i) to maximize the downlink communication rate, and (ii) to minimize the effective number of server observations needed to determine <inline-formula> <tex-math notation="LaTeX">\boldsymbol A \boldsymbol B </tex-math></inline-formula>, while preserving security, where we allow for up to <inline-formula> <tex-math notation="LaTeX">\ell \leq N </tex-math></inline-formula> servers to collude. To this end, we propose two schemes - an aligned secret sharing scheme (A3S) and a secure cross subspace alignment (SCSA) scheme. For A3S, we optimize the partitioning of matrices <inline-formula> <tex-math notation="LaTeX">\boldsymbol A </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol B </tex-math></inline-formula> in order to either optimize objective (i) or (ii) as a function of the system parameters (e.g., <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\ell </tex-math></inline-formula>). A proposed inductive approach gives us analytical, close-to-optimal solutions for both (i) and (ii). The SCSA, on the other hand, is shown to be (rate) capacity-optimal for the general <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>-sided distributed secure matrix multiplication problem <inline-formula> <tex-math notation="LaTeX">\prod _{j=1}^{J} \boldsymbol M_{j} </tex-math></inline-formula>. We show this by developing a recursive information-theoretic upper bound (converse) on the downlink rate for the <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>-sided secure matrix multiplication problem. With respect to (i), both A3S and SCSA, significantly outperform the state-of-the-art in terms of (a) communication rate, (b) maximum tolerable number of colluding servers, and (c) computational complexity. Overall SCSA (A3S) is the preferred choice when the focus is on the downlink (uplink).]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2908024</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computational complexity ; Computational modeling ; Cryptography ; Downlink ; Downlinking ; Fields (mathematics) ; Information theory ; interference alignment ; Matrix multiplication ; Multiplication ; Optimization ; Robustness (mathematics) ; secret sharing ; security ; Servers ; straggler mitigation ; Uplink ; Upper bounds</subject><ispartof>IEEE access, 2019, Vol.7, p.45783-45799</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8e7165a05195792ff6d66129344330a2715cc3cc45e3e8ea36acd7beabc6843</citedby><cites>FETCH-LOGICAL-c408t-8e7165a05195792ff6d66129344330a2715cc3cc45e3e8ea36acd7beabc6843</cites><orcidid>0000-0003-1468-5250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8675905$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,4025,27638,27928,27929,27930,54938</link.rule.ids></links><search><creatorcontrib>Kakar, Jaber</creatorcontrib><creatorcontrib>Ebadifar, Seyedhamed</creatorcontrib><creatorcontrib>Sezgin, Aydin</creatorcontrib><title>On the Capacity and Straggler-Robustness of Distributed Secure Matrix Multiplication</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Computationally efficient matrix multiplication is a fundamental requirement in various fields, including and particularly in data analytics. To do so, the computation task of large-scale matrix multiplication is typically outsourced to multiple servers. However, due to data misusage at the servers, security is typical of concern. In this paper, we first study the two-sided secure matrix multiplication problem, where a user is interested in the matrix product <inline-formula> <tex-math notation="LaTeX">\boldsymbol A \boldsymbol B </tex-math></inline-formula> of two finite field private matrices <inline-formula> <tex-math notation="LaTeX">\boldsymbol A </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol B </tex-math></inline-formula> from an information-theoretic perspective. In this problem, the user exploits the computational resources of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> servers to compute the matrix product but simultaneously tries to conceal the private matrices from the servers. Our goal is twofold: (i) to maximize the downlink communication rate, and (ii) to minimize the effective number of server observations needed to determine <inline-formula> <tex-math notation="LaTeX">\boldsymbol A \boldsymbol B </tex-math></inline-formula>, while preserving security, where we allow for up to <inline-formula> <tex-math notation="LaTeX">\ell \leq N </tex-math></inline-formula> servers to collude. To this end, we propose two schemes - an aligned secret sharing scheme (A3S) and a secure cross subspace alignment (SCSA) scheme. For A3S, we optimize the partitioning of matrices <inline-formula> <tex-math notation="LaTeX">\boldsymbol A </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol B </tex-math></inline-formula> in order to either optimize objective (i) or (ii) as a function of the system parameters (e.g., <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\ell </tex-math></inline-formula>). A proposed inductive approach gives us analytical, close-to-optimal solutions for both (i) and (ii). The SCSA, on the other hand, is shown to be (rate) capacity-optimal for the general <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>-sided distributed secure matrix multiplication problem <inline-formula> <tex-math notation="LaTeX">\prod _{j=1}^{J} \boldsymbol M_{j} </tex-math></inline-formula>. We show this by developing a recursive information-theoretic upper bound (converse) on the downlink rate for the <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>-sided secure matrix multiplication problem. With respect to (i), both A3S and SCSA, significantly outperform the state-of-the-art in terms of (a) communication rate, (b) maximum tolerable number of colluding servers, and (c) computational complexity. Overall SCSA (A3S) is the preferred choice when the focus is on the downlink (uplink).]]></description><subject>Computational complexity</subject><subject>Computational modeling</subject><subject>Cryptography</subject><subject>Downlink</subject><subject>Downlinking</subject><subject>Fields (mathematics)</subject><subject>Information theory</subject><subject>interference alignment</subject><subject>Matrix multiplication</subject><subject>Multiplication</subject><subject>Optimization</subject><subject>Robustness (mathematics)</subject><subject>secret sharing</subject><subject>security</subject><subject>Servers</subject><subject>straggler mitigation</subject><subject>Uplink</subject><subject>Upper bounds</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LxTAQLKKgqL_AS8Fzn_lOe5T6CYrg8x626faZR22eSQr6741WxL3sMszMDkxRnFGyopQ0F5dte71erxihzYo1pCZM7BVHjKqm4pKr_X_3YXEa45bkqTMk9VHx8jSV6RXLFnZgXfosYerLdQqw2YwYqmffzTFNGGPph_LKxRRcNyfMHLRzwPIRMvJRPs5jcrvRWUjOTyfFwQBjxNPffVysb65f2rvq4en2vr18qKwgdapq1FRJIJLmKA0bBtUrRVnDheCcANNUWsutFRI51ghcge11h9BZVQt-XNwvrr2HrdkF9wbh03hw5gfwYWMgJGdHNJoLJfqG814x0RHdEdvRjoGueyt7C9nrfPHaBf8-Y0xm6-cw5fCGCSmVoFzTzOILywYfY8Dh7ysl5rsLs3Rhvrswv11k1dmicoj4p6iVlg2R_Au5XITw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kakar, Jaber</creator><creator>Ebadifar, Seyedhamed</creator><creator>Sezgin, Aydin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1468-5250</orcidid></search><sort><creationdate>2019</creationdate><title>On the Capacity and Straggler-Robustness of Distributed Secure Matrix Multiplication</title><author>Kakar, Jaber ; Ebadifar, Seyedhamed ; Sezgin, Aydin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8e7165a05195792ff6d66129344330a2715cc3cc45e3e8ea36acd7beabc6843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational complexity</topic><topic>Computational modeling</topic><topic>Cryptography</topic><topic>Downlink</topic><topic>Downlinking</topic><topic>Fields (mathematics)</topic><topic>Information theory</topic><topic>interference alignment</topic><topic>Matrix multiplication</topic><topic>Multiplication</topic><topic>Optimization</topic><topic>Robustness (mathematics)</topic><topic>secret sharing</topic><topic>security</topic><topic>Servers</topic><topic>straggler mitigation</topic><topic>Uplink</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kakar, Jaber</creatorcontrib><creatorcontrib>Ebadifar, Seyedhamed</creatorcontrib><creatorcontrib>Sezgin, Aydin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kakar, Jaber</au><au>Ebadifar, Seyedhamed</au><au>Sezgin, Aydin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Capacity and Straggler-Robustness of Distributed Secure Matrix Multiplication</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>45783</spage><epage>45799</epage><pages>45783-45799</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Computationally efficient matrix multiplication is a fundamental requirement in various fields, including and particularly in data analytics. To do so, the computation task of large-scale matrix multiplication is typically outsourced to multiple servers. However, due to data misusage at the servers, security is typical of concern. In this paper, we first study the two-sided secure matrix multiplication problem, where a user is interested in the matrix product <inline-formula> <tex-math notation="LaTeX">\boldsymbol A \boldsymbol B </tex-math></inline-formula> of two finite field private matrices <inline-formula> <tex-math notation="LaTeX">\boldsymbol A </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol B </tex-math></inline-formula> from an information-theoretic perspective. In this problem, the user exploits the computational resources of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> servers to compute the matrix product but simultaneously tries to conceal the private matrices from the servers. Our goal is twofold: (i) to maximize the downlink communication rate, and (ii) to minimize the effective number of server observations needed to determine <inline-formula> <tex-math notation="LaTeX">\boldsymbol A \boldsymbol B </tex-math></inline-formula>, while preserving security, where we allow for up to <inline-formula> <tex-math notation="LaTeX">\ell \leq N </tex-math></inline-formula> servers to collude. To this end, we propose two schemes - an aligned secret sharing scheme (A3S) and a secure cross subspace alignment (SCSA) scheme. For A3S, we optimize the partitioning of matrices <inline-formula> <tex-math notation="LaTeX">\boldsymbol A </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\boldsymbol B </tex-math></inline-formula> in order to either optimize objective (i) or (ii) as a function of the system parameters (e.g., <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\ell </tex-math></inline-formula>). A proposed inductive approach gives us analytical, close-to-optimal solutions for both (i) and (ii). The SCSA, on the other hand, is shown to be (rate) capacity-optimal for the general <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>-sided distributed secure matrix multiplication problem <inline-formula> <tex-math notation="LaTeX">\prod _{j=1}^{J} \boldsymbol M_{j} </tex-math></inline-formula>. We show this by developing a recursive information-theoretic upper bound (converse) on the downlink rate for the <inline-formula> <tex-math notation="LaTeX">J </tex-math></inline-formula>-sided secure matrix multiplication problem. With respect to (i), both A3S and SCSA, significantly outperform the state-of-the-art in terms of (a) communication rate, (b) maximum tolerable number of colluding servers, and (c) computational complexity. Overall SCSA (A3S) is the preferred choice when the focus is on the downlink (uplink).]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2908024</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1468-5250</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.45783-45799
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2908024
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Computational complexity
Computational modeling
Cryptography
Downlink
Downlinking
Fields (mathematics)
Information theory
interference alignment
Matrix multiplication
Multiplication
Optimization
Robustness (mathematics)
secret sharing
security
Servers
straggler mitigation
Uplink
Upper bounds
title On the Capacity and Straggler-Robustness of Distributed Secure Matrix Multiplication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T12%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Capacity%20and%20Straggler-Robustness%20of%20Distributed%20Secure%20Matrix%20Multiplication&rft.jtitle=IEEE%20access&rft.au=Kakar,%20Jaber&rft.date=2019&rft.volume=7&rft.spage=45783&rft.epage=45799&rft.pages=45783-45799&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2908024&rft_dat=%3Cproquest_cross%3E2455641371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455641371&rft_id=info:pmid/&rft_ieee_id=8675905&rft_doaj_id=oai_doaj_org_article_73464d933d624b07b0cb1b2a78dc5dca&rfr_iscdi=true