A Fast Approach of Provisioning Virtual Machines by Using Image Content Similarity in Cloud
To quickly provision multiple virtual machines (VMs) is a challenge in nowadays cloud data centers (CDCs). By utilizing the content similarity among the virtual machine image (VMI) files, the amount of data transferred in the VM provisioning is reduced, and hence, the provisioning time can be shorte...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.45099-45109 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45109 |
---|---|
container_issue | |
container_start_page | 45099 |
container_title | IEEE access |
container_volume | 7 |
creator | Li, Huixi Wang, Shaokai Ruan, Chang |
description | To quickly provision multiple virtual machines (VMs) is a challenge in nowadays cloud data centers (CDCs). By utilizing the content similarity among the virtual machine image (VMI) files, the amount of data transferred in the VM provisioning is reduced, and hence, the provisioning time can be shortened. Thus, minimizing the total amount of transferred VMI file data is helpful for accelerating the VM provisioning. Meanwhile, packing the VMs into the minimum number of physical machines (PMs) is also crucial for the CDCs. To solve these two problems at the same time, we propose a heuristic algorithm, called fast balance placement (FBP), by utilizing several tables to precompute and store the similarity relationships among different VMI files. Comparing to the balance-placement algorithm, the simulation results show that FBP uses less PMs to pack the VMs and its running time is shorter, and it transfers almost the same amount of the VMI file data. |
doi_str_mv | 10.1109/ACCESS.2019.2907596 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2907596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8684951</ieee_id><doaj_id>oai_doaj_org_article_0df460ee3dc743ebac4a0027e806d7fc</doaj_id><sourcerecordid>2455619324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a2672e29d030f32fa48356df0a1d7c9aeb8a2b97996e0fdac56facbb327d5a7b3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoDDWl-QS6CnO3qYyWtjmZJWkNKA05y6UHMSiNHZr1ypXXB_z7rbgidywxv5r0Z5lXVDaNLxqj5tmrbu81mySkzS26olkZ9qi45U2YhpFCf_6u_VNel7OgUzQRJfVn9XpF7KCNZHQ45gXslKZDHnP7GEtMQhy15iXk8Qk9-Ts04YCHdiTyXc2e9hy2SNg0jDiPZxH3sIcfxROJA2j4d_dfqIkBf8Po9X1XP93dP7Y_Fw6_v63b1sHA1bcYFcKU5cuOpoEHwAHUjpPKBAvPaGcCuAd4ZbYxCGjw4qQK4rhNcewm6E1fVetb1CXb2kOMe8skmiPYfkPLWQh6j69FSH2pFEYV3uhbYgauBUq6xocrr4Cat21lresefI5bR7tIxD9P5ltdSKmYEr6cpMU-5nErJGD62MmrPptjZFHs2xb6bMrFuZlZExA9Go5raSCbeACSyiLQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455619324</pqid></control><display><type>article</type><title>A Fast Approach of Provisioning Virtual Machines by Using Image Content Similarity in Cloud</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Huixi ; Wang, Shaokai ; Ruan, Chang</creator><creatorcontrib>Li, Huixi ; Wang, Shaokai ; Ruan, Chang</creatorcontrib><description>To quickly provision multiple virtual machines (VMs) is a challenge in nowadays cloud data centers (CDCs). By utilizing the content similarity among the virtual machine image (VMI) files, the amount of data transferred in the VM provisioning is reduced, and hence, the provisioning time can be shortened. Thus, minimizing the total amount of transferred VMI file data is helpful for accelerating the VM provisioning. Meanwhile, packing the VMs into the minimum number of physical machines (PMs) is also crucial for the CDCs. To solve these two problems at the same time, we propose a heuristic algorithm, called fast balance placement (FBP), by utilizing several tables to precompute and store the similarity relationships among different VMI files. Comparing to the balance-placement algorithm, the simulation results show that FBP uses less PMs to pack the VMs and its running time is shorter, and it transfers almost the same amount of the VMI file data.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2907596</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cloud computing ; content similarity ; Data centers ; Heuristic methods ; Microsoft Windows ; Optimization ; Placement ; Provisioning ; Servers ; Similarity ; Simulation ; Virtual environments ; virtual machine image ; virtual machine packing ; Virtual machine provisioning ; Virtual machining</subject><ispartof>IEEE access, 2019, Vol.7, p.45099-45109</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a2672e29d030f32fa48356df0a1d7c9aeb8a2b97996e0fdac56facbb327d5a7b3</citedby><cites>FETCH-LOGICAL-c408t-a2672e29d030f32fa48356df0a1d7c9aeb8a2b97996e0fdac56facbb327d5a7b3</cites><orcidid>0000-0003-3576-1208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8684951$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Huixi</creatorcontrib><creatorcontrib>Wang, Shaokai</creatorcontrib><creatorcontrib>Ruan, Chang</creatorcontrib><title>A Fast Approach of Provisioning Virtual Machines by Using Image Content Similarity in Cloud</title><title>IEEE access</title><addtitle>Access</addtitle><description>To quickly provision multiple virtual machines (VMs) is a challenge in nowadays cloud data centers (CDCs). By utilizing the content similarity among the virtual machine image (VMI) files, the amount of data transferred in the VM provisioning is reduced, and hence, the provisioning time can be shortened. Thus, minimizing the total amount of transferred VMI file data is helpful for accelerating the VM provisioning. Meanwhile, packing the VMs into the minimum number of physical machines (PMs) is also crucial for the CDCs. To solve these two problems at the same time, we propose a heuristic algorithm, called fast balance placement (FBP), by utilizing several tables to precompute and store the similarity relationships among different VMI files. Comparing to the balance-placement algorithm, the simulation results show that FBP uses less PMs to pack the VMs and its running time is shorter, and it transfers almost the same amount of the VMI file data.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>content similarity</subject><subject>Data centers</subject><subject>Heuristic methods</subject><subject>Microsoft Windows</subject><subject>Optimization</subject><subject>Placement</subject><subject>Provisioning</subject><subject>Servers</subject><subject>Similarity</subject><subject>Simulation</subject><subject>Virtual environments</subject><subject>virtual machine image</subject><subject>virtual machine packing</subject><subject>Virtual machine provisioning</subject><subject>Virtual machining</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoDDWl-QS6CnO3qYyWtjmZJWkNKA05y6UHMSiNHZr1ypXXB_z7rbgidywxv5r0Z5lXVDaNLxqj5tmrbu81mySkzS26olkZ9qi45U2YhpFCf_6u_VNel7OgUzQRJfVn9XpF7KCNZHQ45gXslKZDHnP7GEtMQhy15iXk8Qk9-Ts04YCHdiTyXc2e9hy2SNg0jDiPZxH3sIcfxROJA2j4d_dfqIkBf8Po9X1XP93dP7Y_Fw6_v63b1sHA1bcYFcKU5cuOpoEHwAHUjpPKBAvPaGcCuAd4ZbYxCGjw4qQK4rhNcewm6E1fVetb1CXb2kOMe8skmiPYfkPLWQh6j69FSH2pFEYV3uhbYgauBUq6xocrr4Cat21lresefI5bR7tIxD9P5ltdSKmYEr6cpMU-5nErJGD62MmrPptjZFHs2xb6bMrFuZlZExA9Go5raSCbeACSyiLQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Huixi</creator><creator>Wang, Shaokai</creator><creator>Ruan, Chang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3576-1208</orcidid></search><sort><creationdate>2019</creationdate><title>A Fast Approach of Provisioning Virtual Machines by Using Image Content Similarity in Cloud</title><author>Li, Huixi ; Wang, Shaokai ; Ruan, Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a2672e29d030f32fa48356df0a1d7c9aeb8a2b97996e0fdac56facbb327d5a7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>content similarity</topic><topic>Data centers</topic><topic>Heuristic methods</topic><topic>Microsoft Windows</topic><topic>Optimization</topic><topic>Placement</topic><topic>Provisioning</topic><topic>Servers</topic><topic>Similarity</topic><topic>Simulation</topic><topic>Virtual environments</topic><topic>virtual machine image</topic><topic>virtual machine packing</topic><topic>Virtual machine provisioning</topic><topic>Virtual machining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huixi</creatorcontrib><creatorcontrib>Wang, Shaokai</creatorcontrib><creatorcontrib>Ruan, Chang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huixi</au><au>Wang, Shaokai</au><au>Ruan, Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast Approach of Provisioning Virtual Machines by Using Image Content Similarity in Cloud</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>45099</spage><epage>45109</epage><pages>45099-45109</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To quickly provision multiple virtual machines (VMs) is a challenge in nowadays cloud data centers (CDCs). By utilizing the content similarity among the virtual machine image (VMI) files, the amount of data transferred in the VM provisioning is reduced, and hence, the provisioning time can be shortened. Thus, minimizing the total amount of transferred VMI file data is helpful for accelerating the VM provisioning. Meanwhile, packing the VMs into the minimum number of physical machines (PMs) is also crucial for the CDCs. To solve these two problems at the same time, we propose a heuristic algorithm, called fast balance placement (FBP), by utilizing several tables to precompute and store the similarity relationships among different VMI files. Comparing to the balance-placement algorithm, the simulation results show that FBP uses less PMs to pack the VMs and its running time is shorter, and it transfers almost the same amount of the VMI file data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2907596</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3576-1208</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.45099-45109 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2019_2907596 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Cloud computing content similarity Data centers Heuristic methods Microsoft Windows Optimization Placement Provisioning Servers Similarity Simulation Virtual environments virtual machine image virtual machine packing Virtual machine provisioning Virtual machining |
title | A Fast Approach of Provisioning Virtual Machines by Using Image Content Similarity in Cloud |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast%20Approach%20of%20Provisioning%20Virtual%20Machines%20by%20Using%20Image%20Content%20Similarity%20in%20Cloud&rft.jtitle=IEEE%20access&rft.au=Li,%20Huixi&rft.date=2019&rft.volume=7&rft.spage=45099&rft.epage=45109&rft.pages=45099-45109&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2907596&rft_dat=%3Cproquest_cross%3E2455619324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455619324&rft_id=info:pmid/&rft_ieee_id=8684951&rft_doaj_id=oai_doaj_org_article_0df460ee3dc743ebac4a0027e806d7fc&rfr_iscdi=true |