A Fast Approach of Provisioning Virtual Machines by Using Image Content Similarity in Cloud

To quickly provision multiple virtual machines (VMs) is a challenge in nowadays cloud data centers (CDCs). By utilizing the content similarity among the virtual machine image (VMI) files, the amount of data transferred in the VM provisioning is reduced, and hence, the provisioning time can be shorte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.45099-45109
Hauptverfasser: Li, Huixi, Wang, Shaokai, Ruan, Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45109
container_issue
container_start_page 45099
container_title IEEE access
container_volume 7
creator Li, Huixi
Wang, Shaokai
Ruan, Chang
description To quickly provision multiple virtual machines (VMs) is a challenge in nowadays cloud data centers (CDCs). By utilizing the content similarity among the virtual machine image (VMI) files, the amount of data transferred in the VM provisioning is reduced, and hence, the provisioning time can be shortened. Thus, minimizing the total amount of transferred VMI file data is helpful for accelerating the VM provisioning. Meanwhile, packing the VMs into the minimum number of physical machines (PMs) is also crucial for the CDCs. To solve these two problems at the same time, we propose a heuristic algorithm, called fast balance placement (FBP), by utilizing several tables to precompute and store the similarity relationships among different VMI files. Comparing to the balance-placement algorithm, the simulation results show that FBP uses less PMs to pack the VMs and its running time is shorter, and it transfers almost the same amount of the VMI file data.
doi_str_mv 10.1109/ACCESS.2019.2907596
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2907596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8684951</ieee_id><doaj_id>oai_doaj_org_article_0df460ee3dc743ebac4a0027e806d7fc</doaj_id><sourcerecordid>2455619324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a2672e29d030f32fa48356df0a1d7c9aeb8a2b97996e0fdac56facbb327d5a7b3</originalsourceid><addsrcrecordid>eNpNUU1rGzEQXUoDDWl-QS6CnO3qYyWtjmZJWkNKA05y6UHMSiNHZr1ypXXB_z7rbgidywxv5r0Z5lXVDaNLxqj5tmrbu81mySkzS26olkZ9qi45U2YhpFCf_6u_VNel7OgUzQRJfVn9XpF7KCNZHQ45gXslKZDHnP7GEtMQhy15iXk8Qk9-Ts04YCHdiTyXc2e9hy2SNg0jDiPZxH3sIcfxROJA2j4d_dfqIkBf8Po9X1XP93dP7Y_Fw6_v63b1sHA1bcYFcKU5cuOpoEHwAHUjpPKBAvPaGcCuAd4ZbYxCGjw4qQK4rhNcewm6E1fVetb1CXb2kOMe8skmiPYfkPLWQh6j69FSH2pFEYV3uhbYgauBUq6xocrr4Cat21lresefI5bR7tIxD9P5ltdSKmYEr6cpMU-5nErJGD62MmrPptjZFHs2xb6bMrFuZlZExA9Go5raSCbeACSyiLQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455619324</pqid></control><display><type>article</type><title>A Fast Approach of Provisioning Virtual Machines by Using Image Content Similarity in Cloud</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Huixi ; Wang, Shaokai ; Ruan, Chang</creator><creatorcontrib>Li, Huixi ; Wang, Shaokai ; Ruan, Chang</creatorcontrib><description>To quickly provision multiple virtual machines (VMs) is a challenge in nowadays cloud data centers (CDCs). By utilizing the content similarity among the virtual machine image (VMI) files, the amount of data transferred in the VM provisioning is reduced, and hence, the provisioning time can be shortened. Thus, minimizing the total amount of transferred VMI file data is helpful for accelerating the VM provisioning. Meanwhile, packing the VMs into the minimum number of physical machines (PMs) is also crucial for the CDCs. To solve these two problems at the same time, we propose a heuristic algorithm, called fast balance placement (FBP), by utilizing several tables to precompute and store the similarity relationships among different VMI files. Comparing to the balance-placement algorithm, the simulation results show that FBP uses less PMs to pack the VMs and its running time is shorter, and it transfers almost the same amount of the VMI file data.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2907596</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cloud computing ; content similarity ; Data centers ; Heuristic methods ; Microsoft Windows ; Optimization ; Placement ; Provisioning ; Servers ; Similarity ; Simulation ; Virtual environments ; virtual machine image ; virtual machine packing ; Virtual machine provisioning ; Virtual machining</subject><ispartof>IEEE access, 2019, Vol.7, p.45099-45109</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a2672e29d030f32fa48356df0a1d7c9aeb8a2b97996e0fdac56facbb327d5a7b3</citedby><cites>FETCH-LOGICAL-c408t-a2672e29d030f32fa48356df0a1d7c9aeb8a2b97996e0fdac56facbb327d5a7b3</cites><orcidid>0000-0003-3576-1208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8684951$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Li, Huixi</creatorcontrib><creatorcontrib>Wang, Shaokai</creatorcontrib><creatorcontrib>Ruan, Chang</creatorcontrib><title>A Fast Approach of Provisioning Virtual Machines by Using Image Content Similarity in Cloud</title><title>IEEE access</title><addtitle>Access</addtitle><description>To quickly provision multiple virtual machines (VMs) is a challenge in nowadays cloud data centers (CDCs). By utilizing the content similarity among the virtual machine image (VMI) files, the amount of data transferred in the VM provisioning is reduced, and hence, the provisioning time can be shortened. Thus, minimizing the total amount of transferred VMI file data is helpful for accelerating the VM provisioning. Meanwhile, packing the VMs into the minimum number of physical machines (PMs) is also crucial for the CDCs. To solve these two problems at the same time, we propose a heuristic algorithm, called fast balance placement (FBP), by utilizing several tables to precompute and store the similarity relationships among different VMI files. Comparing to the balance-placement algorithm, the simulation results show that FBP uses less PMs to pack the VMs and its running time is shorter, and it transfers almost the same amount of the VMI file data.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>content similarity</subject><subject>Data centers</subject><subject>Heuristic methods</subject><subject>Microsoft Windows</subject><subject>Optimization</subject><subject>Placement</subject><subject>Provisioning</subject><subject>Servers</subject><subject>Similarity</subject><subject>Simulation</subject><subject>Virtual environments</subject><subject>virtual machine image</subject><subject>virtual machine packing</subject><subject>Virtual machine provisioning</subject><subject>Virtual machining</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQXUoDDWl-QS6CnO3qYyWtjmZJWkNKA05y6UHMSiNHZr1ypXXB_z7rbgidywxv5r0Z5lXVDaNLxqj5tmrbu81mySkzS26olkZ9qi45U2YhpFCf_6u_VNel7OgUzQRJfVn9XpF7KCNZHQ45gXslKZDHnP7GEtMQhy15iXk8Qk9-Ts04YCHdiTyXc2e9hy2SNg0jDiPZxH3sIcfxROJA2j4d_dfqIkBf8Po9X1XP93dP7Y_Fw6_v63b1sHA1bcYFcKU5cuOpoEHwAHUjpPKBAvPaGcCuAd4ZbYxCGjw4qQK4rhNcewm6E1fVetb1CXb2kOMe8skmiPYfkPLWQh6j69FSH2pFEYV3uhbYgauBUq6xocrr4Cat21lresefI5bR7tIxD9P5ltdSKmYEr6cpMU-5nErJGD62MmrPptjZFHs2xb6bMrFuZlZExA9Go5raSCbeACSyiLQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Huixi</creator><creator>Wang, Shaokai</creator><creator>Ruan, Chang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3576-1208</orcidid></search><sort><creationdate>2019</creationdate><title>A Fast Approach of Provisioning Virtual Machines by Using Image Content Similarity in Cloud</title><author>Li, Huixi ; Wang, Shaokai ; Ruan, Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a2672e29d030f32fa48356df0a1d7c9aeb8a2b97996e0fdac56facbb327d5a7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>content similarity</topic><topic>Data centers</topic><topic>Heuristic methods</topic><topic>Microsoft Windows</topic><topic>Optimization</topic><topic>Placement</topic><topic>Provisioning</topic><topic>Servers</topic><topic>Similarity</topic><topic>Simulation</topic><topic>Virtual environments</topic><topic>virtual machine image</topic><topic>virtual machine packing</topic><topic>Virtual machine provisioning</topic><topic>Virtual machining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huixi</creatorcontrib><creatorcontrib>Wang, Shaokai</creatorcontrib><creatorcontrib>Ruan, Chang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huixi</au><au>Wang, Shaokai</au><au>Ruan, Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast Approach of Provisioning Virtual Machines by Using Image Content Similarity in Cloud</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>45099</spage><epage>45109</epage><pages>45099-45109</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To quickly provision multiple virtual machines (VMs) is a challenge in nowadays cloud data centers (CDCs). By utilizing the content similarity among the virtual machine image (VMI) files, the amount of data transferred in the VM provisioning is reduced, and hence, the provisioning time can be shortened. Thus, minimizing the total amount of transferred VMI file data is helpful for accelerating the VM provisioning. Meanwhile, packing the VMs into the minimum number of physical machines (PMs) is also crucial for the CDCs. To solve these two problems at the same time, we propose a heuristic algorithm, called fast balance placement (FBP), by utilizing several tables to precompute and store the similarity relationships among different VMI files. Comparing to the balance-placement algorithm, the simulation results show that FBP uses less PMs to pack the VMs and its running time is shorter, and it transfers almost the same amount of the VMI file data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2907596</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3576-1208</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.45099-45109
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2907596
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Cloud computing
content similarity
Data centers
Heuristic methods
Microsoft Windows
Optimization
Placement
Provisioning
Servers
Similarity
Simulation
Virtual environments
virtual machine image
virtual machine packing
Virtual machine provisioning
Virtual machining
title A Fast Approach of Provisioning Virtual Machines by Using Image Content Similarity in Cloud
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast%20Approach%20of%20Provisioning%20Virtual%20Machines%20by%20Using%20Image%20Content%20Similarity%20in%20Cloud&rft.jtitle=IEEE%20access&rft.au=Li,%20Huixi&rft.date=2019&rft.volume=7&rft.spage=45099&rft.epage=45109&rft.pages=45099-45109&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2907596&rft_dat=%3Cproquest_cross%3E2455619324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455619324&rft_id=info:pmid/&rft_ieee_id=8684951&rft_doaj_id=oai_doaj_org_article_0df460ee3dc743ebac4a0027e806d7fc&rfr_iscdi=true