Recursive Conditional Generative Adversarial Networks for Video Transformation

Conditional generative adversarial networks (cGANs) are used in various transformation applications, such as super-resolution, colorization, image denoising, and image inpainting. So far, cGANs have been applied to the transformation of still images, but their use could be extended to the transforma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.37807-37821
Hauptverfasser: Kim, San, Suh, Doug Young
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37821
container_issue
container_start_page 37807
container_title IEEE access
container_volume 7
creator Kim, San
Suh, Doug Young
description Conditional generative adversarial networks (cGANs) are used in various transformation applications, such as super-resolution, colorization, image denoising, and image inpainting. So far, cGANs have been applied to the transformation of still images, but their use could be extended to the transformation of video contents, which has a much larger market. This paper considers problems with the cGAN-based transformation of video contents. The major problem is flickering caused by the discontinuity between adjacent image frames. Several postprocessing algorithms have been proposed to reduce that effect after transformation. We propose a recursive cGAN in which the previous output frame is used as an input in addition to the current input frame to reduce the flickering effect without losing the objective quality of each image. Compared with previous postprocessing algorithms, our approach performed better in terms of various evaluation metrics for video contents.
doi_str_mv 10.1109/ACCESS.2019.2906472
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2906472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8673567</ieee_id><doaj_id>oai_doaj_org_article_7bccfa11e80146e2af1d7cc48550c27a</doaj_id><sourcerecordid>2455607050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b6565699dc64fd10024635db4d7e691de74d2456132ac7376bb1263079ccafba3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXURB0f6CXhY8t-Y7m2NZahWKgq1eQzaZldTa1GRb8d-bdUXMEGbymPdmyCuKMUZTjJG6mdX1fLWaEoTVlCgkmCQnxQXBQk0op-L0X31ejFLaoHyqDHF5UTw8gT3E5I9Q1mHnfOfDzmzLBewgmq6HZ-4IMZnoM_wA3WeIb6lsQyxfvINQrqPZpfx8Nz31qjhrzTbB6DdfFs-383V9N1k-Lu7r2XJiGaq6SSN4DqWcFax1GCHCBOWuYU6CUNiBZI4wLjAlxkoqRdNgIiiSylrTNoZeFveDrgtmo_fRv5v4pYPx-gcI8VWb2Hm7BS0ba1uDMVQIMwHEtNhJa1nFObJE9lrXg9Y-ho8DpE5vwiHmX0g678AFkoij3EWHLhtDShHav6kY6d4HPfigex_0rw-ZNR5YHgD-GJWQlOf7DRQSg-w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455607050</pqid></control><display><type>article</type><title>Recursive Conditional Generative Adversarial Networks for Video Transformation</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kim, San ; Suh, Doug Young</creator><creatorcontrib>Kim, San ; Suh, Doug Young</creatorcontrib><description>Conditional generative adversarial networks (cGANs) are used in various transformation applications, such as super-resolution, colorization, image denoising, and image inpainting. So far, cGANs have been applied to the transformation of still images, but their use could be extended to the transformation of video contents, which has a much larger market. This paper considers problems with the cGAN-based transformation of video contents. The major problem is flickering caused by the discontinuity between adjacent image frames. Several postprocessing algorithms have been proposed to reduce that effect after transformation. We propose a recursive cGAN in which the previous output frame is used as an input in addition to the current input frame to reduce the flickering effect without losing the objective quality of each image. Compared with previous postprocessing algorithms, our approach performed better in terms of various evaluation metrics for video contents.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2906472</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Data models ; Gallium nitride ; generative adversarial network ; Generative adversarial networks ; Histograms ; Image quality ; Image resolution ; Image sequences ; Image-to-image transformation ; Noise reduction ; reducing flicker ; Task analysis ; Transformations ; video transformation</subject><ispartof>IEEE access, 2019, Vol.7, p.37807-37821</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b6565699dc64fd10024635db4d7e691de74d2456132ac7376bb1263079ccafba3</citedby><cites>FETCH-LOGICAL-c408t-b6565699dc64fd10024635db4d7e691de74d2456132ac7376bb1263079ccafba3</cites><orcidid>0000-0001-9851-5464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8673567$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Kim, San</creatorcontrib><creatorcontrib>Suh, Doug Young</creatorcontrib><title>Recursive Conditional Generative Adversarial Networks for Video Transformation</title><title>IEEE access</title><addtitle>Access</addtitle><description>Conditional generative adversarial networks (cGANs) are used in various transformation applications, such as super-resolution, colorization, image denoising, and image inpainting. So far, cGANs have been applied to the transformation of still images, but their use could be extended to the transformation of video contents, which has a much larger market. This paper considers problems with the cGAN-based transformation of video contents. The major problem is flickering caused by the discontinuity between adjacent image frames. Several postprocessing algorithms have been proposed to reduce that effect after transformation. We propose a recursive cGAN in which the previous output frame is used as an input in addition to the current input frame to reduce the flickering effect without losing the objective quality of each image. Compared with previous postprocessing algorithms, our approach performed better in terms of various evaluation metrics for video contents.</description><subject>Algorithms</subject><subject>Data models</subject><subject>Gallium nitride</subject><subject>generative adversarial network</subject><subject>Generative adversarial networks</subject><subject>Histograms</subject><subject>Image quality</subject><subject>Image resolution</subject><subject>Image sequences</subject><subject>Image-to-image transformation</subject><subject>Noise reduction</subject><subject>reducing flicker</subject><subject>Task analysis</subject><subject>Transformations</subject><subject>video transformation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXURB0f6CXhY8t-Y7m2NZahWKgq1eQzaZldTa1GRb8d-bdUXMEGbymPdmyCuKMUZTjJG6mdX1fLWaEoTVlCgkmCQnxQXBQk0op-L0X31ejFLaoHyqDHF5UTw8gT3E5I9Q1mHnfOfDzmzLBewgmq6HZ-4IMZnoM_wA3WeIb6lsQyxfvINQrqPZpfx8Nz31qjhrzTbB6DdfFs-383V9N1k-Lu7r2XJiGaq6SSN4DqWcFax1GCHCBOWuYU6CUNiBZI4wLjAlxkoqRdNgIiiSylrTNoZeFveDrgtmo_fRv5v4pYPx-gcI8VWb2Hm7BS0ba1uDMVQIMwHEtNhJa1nFObJE9lrXg9Y-ho8DpE5vwiHmX0g678AFkoij3EWHLhtDShHav6kY6d4HPfigex_0rw-ZNR5YHgD-GJWQlOf7DRQSg-w</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kim, San</creator><creator>Suh, Doug Young</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9851-5464</orcidid></search><sort><creationdate>2019</creationdate><title>Recursive Conditional Generative Adversarial Networks for Video Transformation</title><author>Kim, San ; Suh, Doug Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b6565699dc64fd10024635db4d7e691de74d2456132ac7376bb1263079ccafba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Data models</topic><topic>Gallium nitride</topic><topic>generative adversarial network</topic><topic>Generative adversarial networks</topic><topic>Histograms</topic><topic>Image quality</topic><topic>Image resolution</topic><topic>Image sequences</topic><topic>Image-to-image transformation</topic><topic>Noise reduction</topic><topic>reducing flicker</topic><topic>Task analysis</topic><topic>Transformations</topic><topic>video transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, San</creatorcontrib><creatorcontrib>Suh, Doug Young</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, San</au><au>Suh, Doug Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recursive Conditional Generative Adversarial Networks for Video Transformation</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>37807</spage><epage>37821</epage><pages>37807-37821</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Conditional generative adversarial networks (cGANs) are used in various transformation applications, such as super-resolution, colorization, image denoising, and image inpainting. So far, cGANs have been applied to the transformation of still images, but their use could be extended to the transformation of video contents, which has a much larger market. This paper considers problems with the cGAN-based transformation of video contents. The major problem is flickering caused by the discontinuity between adjacent image frames. Several postprocessing algorithms have been proposed to reduce that effect after transformation. We propose a recursive cGAN in which the previous output frame is used as an input in addition to the current input frame to reduce the flickering effect without losing the objective quality of each image. Compared with previous postprocessing algorithms, our approach performed better in terms of various evaluation metrics for video contents.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2906472</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9851-5464</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.37807-37821
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2906472
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Data models
Gallium nitride
generative adversarial network
Generative adversarial networks
Histograms
Image quality
Image resolution
Image sequences
Image-to-image transformation
Noise reduction
reducing flicker
Task analysis
Transformations
video transformation
title Recursive Conditional Generative Adversarial Networks for Video Transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recursive%20Conditional%20Generative%20Adversarial%20Networks%20for%20Video%20Transformation&rft.jtitle=IEEE%20access&rft.au=Kim,%20San&rft.date=2019&rft.volume=7&rft.spage=37807&rft.epage=37821&rft.pages=37807-37821&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2906472&rft_dat=%3Cproquest_cross%3E2455607050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455607050&rft_id=info:pmid/&rft_ieee_id=8673567&rft_doaj_id=oai_doaj_org_article_7bccfa11e80146e2af1d7cc48550c27a&rfr_iscdi=true