A Novel Violent Video Detection Scheme Based on Modified 3D Convolutional Neural Networks

Violent video constitutes a threat to public security, and effective detection algorithms are in urgent need. In order to improve the detection accuracy of 3D convolutional neural networks (3D ConvNet), a novel violent video detection scheme based on the modified 3D ConvNet is proposed. In this pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.39172-39179
Hauptverfasser: Song, Wei, Zhang, Dongliang, Zhao, Xiaobing, Yu, Jing, Zheng, Rui, Wang, Antai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39179
container_issue
container_start_page 39172
container_title IEEE access
container_volume 7
creator Song, Wei
Zhang, Dongliang
Zhao, Xiaobing
Yu, Jing
Zheng, Rui
Wang, Antai
description Violent video constitutes a threat to public security, and effective detection algorithms are in urgent need. In order to improve the detection accuracy of 3D convolutional neural networks (3D ConvNet), a novel violent video detection scheme based on the modified 3D ConvNet is proposed. In this paper, the preprocessing method of data is improved, and a new sampling method by using the key frame as dividing nodes is designed. Then, a random sampling method is adapted to produce the input frame sequence. With experimental evaluations on the crowd violence dataset, the results demonstrate the effectiveness of the proposed new sampling method. For three public violent detection datasets: hockey fight, movies, and crowd violence, individualized strategies are implemented to suit the varied clip length. For the short clips, the 3D ConvNet is constructed by using the uniform sampling method. For the longer clips, the new frame sampling strategy is adopted. The proposed scheme obtains competitive results: 99.62% on hockey fight, 99.97% on movies, and 94.3% on crowd violence. The experimental results show that our method is simple and effective.
doi_str_mv 10.1109/ACCESS.2019.2906275
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2906275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8669768</ieee_id><doaj_id>oai_doaj_org_article_84b726f80d73459ba434b74cae4b2bc7</doaj_id><sourcerecordid>2455617118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-6e8a307972fd3230f7b53648184433428b88f8c596f1f555fdc4216a7cf1f4cf3</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIIOgX9BKJc4vfdo4l5VEJyqGAxMlynDWkpDXYKYi_x20qhC-7O5qZ9WqybIjRGGNUXEzK8mqxGBOEizEpkCCSH2QnBItiRDkVh__642wQ4xKlpxLE5Un2Msnn_gva_LnxLay7VGvw-RQ6sF3j1_nCvsEK8ksToc7TfO_rxjWpp9O89Osv3262PNPmc9iEXem-fXiPZ9mRM22Ewb6eZk_XV4_l7eju4WZWTu5GliHVjQQoQ5EsJHE1JRQ5WaWPMoUVY5QyoiqlnLK8EA47zrmrLUv3GGnTzKyjp9ms9629WeqP0KxM-NHeNHoH-PCqTega24JWrJJEOIVqSRkvKsNoQpg1wCpSWZm8znuvj-A_NxA7vfSbkI6LmjDOBZYYq8SiPcsGH2MA97cVI72NRPeR6G0keh9JUg17VQMAfwolRCGFor-u3YWV</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455617118</pqid></control><display><type>article</type><title>A Novel Violent Video Detection Scheme Based on Modified 3D Convolutional Neural Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Song, Wei ; Zhang, Dongliang ; Zhao, Xiaobing ; Yu, Jing ; Zheng, Rui ; Wang, Antai</creator><creatorcontrib>Song, Wei ; Zhang, Dongliang ; Zhao, Xiaobing ; Yu, Jing ; Zheng, Rui ; Wang, Antai</creatorcontrib><description>Violent video constitutes a threat to public security, and effective detection algorithms are in urgent need. In order to improve the detection accuracy of 3D convolutional neural networks (3D ConvNet), a novel violent video detection scheme based on the modified 3D ConvNet is proposed. In this paper, the preprocessing method of data is improved, and a new sampling method by using the key frame as dividing nodes is designed. Then, a random sampling method is adapted to produce the input frame sequence. With experimental evaluations on the crowd violence dataset, the results demonstrate the effectiveness of the proposed new sampling method. For three public violent detection datasets: hockey fight, movies, and crowd violence, individualized strategies are implemented to suit the varied clip length. For the short clips, the 3D ConvNet is constructed by using the uniform sampling method. For the longer clips, the new frame sampling strategy is adopted. The proposed scheme obtains competitive results: 99.62% on hockey fight, 99.97% on movies, and 94.3% on crowd violence. The experimental results show that our method is simple and effective.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2906275</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>3D ConvNet ; Algorithms ; Artificial neural networks ; Business competition ; Clips ; Convolution ; Datasets ; Deep learning ; Feature extraction ; Hockey ; key frame extraction ; Motion pictures ; Neural networks ; Random sampling ; Sampling methods ; Three-dimensional displays ; Violence ; Violent video detection ; Visualization</subject><ispartof>IEEE access, 2019, Vol.7, p.39172-39179</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-6e8a307972fd3230f7b53648184433428b88f8c596f1f555fdc4216a7cf1f4cf3</citedby><cites>FETCH-LOGICAL-c408t-6e8a307972fd3230f7b53648184433428b88f8c596f1f555fdc4216a7cf1f4cf3</cites><orcidid>0000-0002-2324-4302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8669768$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Zhang, Dongliang</creatorcontrib><creatorcontrib>Zhao, Xiaobing</creatorcontrib><creatorcontrib>Yu, Jing</creatorcontrib><creatorcontrib>Zheng, Rui</creatorcontrib><creatorcontrib>Wang, Antai</creatorcontrib><title>A Novel Violent Video Detection Scheme Based on Modified 3D Convolutional Neural Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>Violent video constitutes a threat to public security, and effective detection algorithms are in urgent need. In order to improve the detection accuracy of 3D convolutional neural networks (3D ConvNet), a novel violent video detection scheme based on the modified 3D ConvNet is proposed. In this paper, the preprocessing method of data is improved, and a new sampling method by using the key frame as dividing nodes is designed. Then, a random sampling method is adapted to produce the input frame sequence. With experimental evaluations on the crowd violence dataset, the results demonstrate the effectiveness of the proposed new sampling method. For three public violent detection datasets: hockey fight, movies, and crowd violence, individualized strategies are implemented to suit the varied clip length. For the short clips, the 3D ConvNet is constructed by using the uniform sampling method. For the longer clips, the new frame sampling strategy is adopted. The proposed scheme obtains competitive results: 99.62% on hockey fight, 99.97% on movies, and 94.3% on crowd violence. The experimental results show that our method is simple and effective.</description><subject>3D ConvNet</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Business competition</subject><subject>Clips</subject><subject>Convolution</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Hockey</subject><subject>key frame extraction</subject><subject>Motion pictures</subject><subject>Neural networks</subject><subject>Random sampling</subject><subject>Sampling methods</subject><subject>Three-dimensional displays</subject><subject>Violence</subject><subject>Violent video detection</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIIOgX9BKJc4vfdo4l5VEJyqGAxMlynDWkpDXYKYi_x20qhC-7O5qZ9WqybIjRGGNUXEzK8mqxGBOEizEpkCCSH2QnBItiRDkVh__642wQ4xKlpxLE5Un2Msnn_gva_LnxLay7VGvw-RQ6sF3j1_nCvsEK8ksToc7TfO_rxjWpp9O89Osv3262PNPmc9iEXem-fXiPZ9mRM22Ewb6eZk_XV4_l7eju4WZWTu5GliHVjQQoQ5EsJHE1JRQ5WaWPMoUVY5QyoiqlnLK8EA47zrmrLUv3GGnTzKyjp9ms9629WeqP0KxM-NHeNHoH-PCqTega24JWrJJEOIVqSRkvKsNoQpg1wCpSWZm8znuvj-A_NxA7vfSbkI6LmjDOBZYYq8SiPcsGH2MA97cVI72NRPeR6G0keh9JUg17VQMAfwolRCGFor-u3YWV</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Song, Wei</creator><creator>Zhang, Dongliang</creator><creator>Zhao, Xiaobing</creator><creator>Yu, Jing</creator><creator>Zheng, Rui</creator><creator>Wang, Antai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2324-4302</orcidid></search><sort><creationdate>2019</creationdate><title>A Novel Violent Video Detection Scheme Based on Modified 3D Convolutional Neural Networks</title><author>Song, Wei ; Zhang, Dongliang ; Zhao, Xiaobing ; Yu, Jing ; Zheng, Rui ; Wang, Antai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-6e8a307972fd3230f7b53648184433428b88f8c596f1f555fdc4216a7cf1f4cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D ConvNet</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Business competition</topic><topic>Clips</topic><topic>Convolution</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Hockey</topic><topic>key frame extraction</topic><topic>Motion pictures</topic><topic>Neural networks</topic><topic>Random sampling</topic><topic>Sampling methods</topic><topic>Three-dimensional displays</topic><topic>Violence</topic><topic>Violent video detection</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Zhang, Dongliang</creatorcontrib><creatorcontrib>Zhao, Xiaobing</creatorcontrib><creatorcontrib>Yu, Jing</creatorcontrib><creatorcontrib>Zheng, Rui</creatorcontrib><creatorcontrib>Wang, Antai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Wei</au><au>Zhang, Dongliang</au><au>Zhao, Xiaobing</au><au>Yu, Jing</au><au>Zheng, Rui</au><au>Wang, Antai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Violent Video Detection Scheme Based on Modified 3D Convolutional Neural Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>39172</spage><epage>39179</epage><pages>39172-39179</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Violent video constitutes a threat to public security, and effective detection algorithms are in urgent need. In order to improve the detection accuracy of 3D convolutional neural networks (3D ConvNet), a novel violent video detection scheme based on the modified 3D ConvNet is proposed. In this paper, the preprocessing method of data is improved, and a new sampling method by using the key frame as dividing nodes is designed. Then, a random sampling method is adapted to produce the input frame sequence. With experimental evaluations on the crowd violence dataset, the results demonstrate the effectiveness of the proposed new sampling method. For three public violent detection datasets: hockey fight, movies, and crowd violence, individualized strategies are implemented to suit the varied clip length. For the short clips, the 3D ConvNet is constructed by using the uniform sampling method. For the longer clips, the new frame sampling strategy is adopted. The proposed scheme obtains competitive results: 99.62% on hockey fight, 99.97% on movies, and 94.3% on crowd violence. The experimental results show that our method is simple and effective.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2906275</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2324-4302</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.39172-39179
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2906275
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects 3D ConvNet
Algorithms
Artificial neural networks
Business competition
Clips
Convolution
Datasets
Deep learning
Feature extraction
Hockey
key frame extraction
Motion pictures
Neural networks
Random sampling
Sampling methods
Three-dimensional displays
Violence
Violent video detection
Visualization
title A Novel Violent Video Detection Scheme Based on Modified 3D Convolutional Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Violent%20Video%20Detection%20Scheme%20Based%20on%20Modified%203D%20Convolutional%20Neural%20Networks&rft.jtitle=IEEE%20access&rft.au=Song,%20Wei&rft.date=2019&rft.volume=7&rft.spage=39172&rft.epage=39179&rft.pages=39172-39179&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2906275&rft_dat=%3Cproquest_cross%3E2455617118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455617118&rft_id=info:pmid/&rft_ieee_id=8669768&rft_doaj_id=oai_doaj_org_article_84b726f80d73459ba434b74cae4b2bc7&rfr_iscdi=true