A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting

The volatility and uncertainty of wind power often affect the quality of electric energy, the security of the power grid, the stability of the power system, and the fluctuation of the power market. In this case, the research on wind power forecasting is of great significance for ensuring the better...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.28309-28318
Hauptverfasser: Ju, Yun, Sun, Guangyu, Chen, Quanhe, Zhang, Min, Zhu, Huixian, Rehman, Mujeeb Ur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28318
container_issue
container_start_page 28309
container_title IEEE access
container_volume 7
creator Ju, Yun
Sun, Guangyu
Chen, Quanhe
Zhang, Min
Zhu, Huixian
Rehman, Mujeeb Ur
description The volatility and uncertainty of wind power often affect the quality of electric energy, the security of the power grid, the stability of the power system, and the fluctuation of the power market. In this case, the research on wind power forecasting is of great significance for ensuring the better development of wind power grids and the higher quality of electric energy. Therefore, a lot of new forecasting methods have been put forward. In this paper, a new forecasting model based on a convolution neural network and LightGBM is constructed. The procedure is shown as follows. First, we construct new feature sets by analyzing the characteristics of the raw data on the time series from the wind field and adjacent wind field. Second, the convolutional neural network (CNN) is proposed to extract information from input data, and the network parameters are adjusted by comparing the actual results. Third, in consideration of the limitations of the single-convolution model in predicting wind power, we innovatively integrated the LightGBM classification algorithm at the model to improve the forecasting accuracy and robustness. Finally, compared with the existing support vector machines, LightGBM, and CNN, the fusion model has better performance in accuracy and efficiency.
doi_str_mv 10.1109/ACCESS.2019.2901920
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2901920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8653826</ieee_id><doaj_id>oai_doaj_org_article_1cbe56faad834484ae23ca61e797d838</doaj_id><sourcerecordid>2455638268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-6860f9ecf5d68b7e6059a0a0932ea98910cfe97b321e560592ff2621c7e1caaf3</originalsourceid><addsrcrecordid>eNpNkU9P3DAQxSNEpSLKJ-BiiXMW_0kc-7iNgCItbaUF9WjNOuNdb7MxON6ifvs6BKH64BmN3_uN5FcUl4wuGKP6etm2N-v1glOmF1znm9OT4owzqUtRC3n6X_-5uBjHPc1H5VHdnBUvS_IQOuxJGw4bP_hhm7vhT-iPyYcBevIdj_GtpNcQfxMYOrLy2126-_pAlv02RJ92B-JCJE99ilCudyGm8hHjgfzyWfwzvGIktyGihTFl_pfik4N-xIv3el483d48tt_K1Y-7-3a5Km3Nq1RKJanTaF3dSbVpUNJaAwWqBUfQSjNqHepmIzjDenrkznHJmW2QWQAnzov7mdsF2Jvn6A8Q_5oA3rwNQtwaiMnbHg2zm8xwAJ0SVaUqQC4sSIaNbvJIZdbVzHqO4eWIYzL7cIz5e0bDq7qWQnE5qcSssjGMY0T3sZVRM0Vl5qjMFJV5jyq7LmeXR8QPh5L1BBX_ADzVj54</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455638268</pqid></control><display><type>article</type><title>A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ju, Yun ; Sun, Guangyu ; Chen, Quanhe ; Zhang, Min ; Zhu, Huixian ; Rehman, Mujeeb Ur</creator><creatorcontrib>Ju, Yun ; Sun, Guangyu ; Chen, Quanhe ; Zhang, Min ; Zhu, Huixian ; Rehman, Mujeeb Ur</creatorcontrib><description>The volatility and uncertainty of wind power often affect the quality of electric energy, the security of the power grid, the stability of the power system, and the fluctuation of the power market. In this case, the research on wind power forecasting is of great significance for ensuring the better development of wind power grids and the higher quality of electric energy. Therefore, a lot of new forecasting methods have been put forward. In this paper, a new forecasting model based on a convolution neural network and LightGBM is constructed. The procedure is shown as follows. First, we construct new feature sets by analyzing the characteristics of the raw data on the time series from the wind field and adjacent wind field. Second, the convolutional neural network (CNN) is proposed to extract information from input data, and the network parameters are adjusted by comparing the actual results. Third, in consideration of the limitations of the single-convolution model in predicting wind power, we innovatively integrated the LightGBM classification algorithm at the model to improve the forecasting accuracy and robustness. Finally, compared with the existing support vector machines, LightGBM, and CNN, the fusion model has better performance in accuracy and efficiency.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2901920</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Convolution ; Convolutional neural network ; Data mining ; Economic forecasting ; Electric power grids ; Electric power systems ; Feature extraction ; Forecasting ; fusion model ; Kernel ; LightGBM ; Mathematical models ; Model accuracy ; Neural networks ; Predictive models ; Support vector machines ; ultra-short-term wind power forecasting ; Volatility ; wind energy ; Wind power ; Wind power generation</subject><ispartof>IEEE access, 2019, Vol.7, p.28309-28318</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-6860f9ecf5d68b7e6059a0a0932ea98910cfe97b321e560592ff2621c7e1caaf3</citedby><cites>FETCH-LOGICAL-c524t-6860f9ecf5d68b7e6059a0a0932ea98910cfe97b321e560592ff2621c7e1caaf3</cites><orcidid>0000-0001-6436-0820 ; 0000-0002-3398-7417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8653826$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ju, Yun</creatorcontrib><creatorcontrib>Sun, Guangyu</creatorcontrib><creatorcontrib>Chen, Quanhe</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Zhu, Huixian</creatorcontrib><creatorcontrib>Rehman, Mujeeb Ur</creatorcontrib><title>A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting</title><title>IEEE access</title><addtitle>Access</addtitle><description>The volatility and uncertainty of wind power often affect the quality of electric energy, the security of the power grid, the stability of the power system, and the fluctuation of the power market. In this case, the research on wind power forecasting is of great significance for ensuring the better development of wind power grids and the higher quality of electric energy. Therefore, a lot of new forecasting methods have been put forward. In this paper, a new forecasting model based on a convolution neural network and LightGBM is constructed. The procedure is shown as follows. First, we construct new feature sets by analyzing the characteristics of the raw data on the time series from the wind field and adjacent wind field. Second, the convolutional neural network (CNN) is proposed to extract information from input data, and the network parameters are adjusted by comparing the actual results. Third, in consideration of the limitations of the single-convolution model in predicting wind power, we innovatively integrated the LightGBM classification algorithm at the model to improve the forecasting accuracy and robustness. Finally, compared with the existing support vector machines, LightGBM, and CNN, the fusion model has better performance in accuracy and efficiency.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Convolutional neural network</subject><subject>Data mining</subject><subject>Economic forecasting</subject><subject>Electric power grids</subject><subject>Electric power systems</subject><subject>Feature extraction</subject><subject>Forecasting</subject><subject>fusion model</subject><subject>Kernel</subject><subject>LightGBM</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Support vector machines</subject><subject>ultra-short-term wind power forecasting</subject><subject>Volatility</subject><subject>wind energy</subject><subject>Wind power</subject><subject>Wind power generation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9P3DAQxSNEpSLKJ-BiiXMW_0kc-7iNgCItbaUF9WjNOuNdb7MxON6ifvs6BKH64BmN3_uN5FcUl4wuGKP6etm2N-v1glOmF1znm9OT4owzqUtRC3n6X_-5uBjHPc1H5VHdnBUvS_IQOuxJGw4bP_hhm7vhT-iPyYcBevIdj_GtpNcQfxMYOrLy2126-_pAlv02RJ92B-JCJE99ilCudyGm8hHjgfzyWfwzvGIktyGihTFl_pfik4N-xIv3el483d48tt_K1Y-7-3a5Km3Nq1RKJanTaF3dSbVpUNJaAwWqBUfQSjNqHepmIzjDenrkznHJmW2QWQAnzov7mdsF2Jvn6A8Q_5oA3rwNQtwaiMnbHg2zm8xwAJ0SVaUqQC4sSIaNbvJIZdbVzHqO4eWIYzL7cIz5e0bDq7qWQnE5qcSssjGMY0T3sZVRM0Vl5qjMFJV5jyq7LmeXR8QPh5L1BBX_ADzVj54</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Ju, Yun</creator><creator>Sun, Guangyu</creator><creator>Chen, Quanhe</creator><creator>Zhang, Min</creator><creator>Zhu, Huixian</creator><creator>Rehman, Mujeeb Ur</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6436-0820</orcidid><orcidid>https://orcid.org/0000-0002-3398-7417</orcidid></search><sort><creationdate>2019</creationdate><title>A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting</title><author>Ju, Yun ; Sun, Guangyu ; Chen, Quanhe ; Zhang, Min ; Zhu, Huixian ; Rehman, Mujeeb Ur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-6860f9ecf5d68b7e6059a0a0932ea98910cfe97b321e560592ff2621c7e1caaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Convolutional neural network</topic><topic>Data mining</topic><topic>Economic forecasting</topic><topic>Electric power grids</topic><topic>Electric power systems</topic><topic>Feature extraction</topic><topic>Forecasting</topic><topic>fusion model</topic><topic>Kernel</topic><topic>LightGBM</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Support vector machines</topic><topic>ultra-short-term wind power forecasting</topic><topic>Volatility</topic><topic>wind energy</topic><topic>Wind power</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju, Yun</creatorcontrib><creatorcontrib>Sun, Guangyu</creatorcontrib><creatorcontrib>Chen, Quanhe</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Zhu, Huixian</creatorcontrib><creatorcontrib>Rehman, Mujeeb Ur</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Yun</au><au>Sun, Guangyu</au><au>Chen, Quanhe</au><au>Zhang, Min</au><au>Zhu, Huixian</au><au>Rehman, Mujeeb Ur</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>28309</spage><epage>28318</epage><pages>28309-28318</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The volatility and uncertainty of wind power often affect the quality of electric energy, the security of the power grid, the stability of the power system, and the fluctuation of the power market. In this case, the research on wind power forecasting is of great significance for ensuring the better development of wind power grids and the higher quality of electric energy. Therefore, a lot of new forecasting methods have been put forward. In this paper, a new forecasting model based on a convolution neural network and LightGBM is constructed. The procedure is shown as follows. First, we construct new feature sets by analyzing the characteristics of the raw data on the time series from the wind field and adjacent wind field. Second, the convolutional neural network (CNN) is proposed to extract information from input data, and the network parameters are adjusted by comparing the actual results. Third, in consideration of the limitations of the single-convolution model in predicting wind power, we innovatively integrated the LightGBM classification algorithm at the model to improve the forecasting accuracy and robustness. Finally, compared with the existing support vector machines, LightGBM, and CNN, the fusion model has better performance in accuracy and efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2901920</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6436-0820</orcidid><orcidid>https://orcid.org/0000-0002-3398-7417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.28309-28318
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2901920
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Artificial neural networks
Convolution
Convolutional neural network
Data mining
Economic forecasting
Electric power grids
Electric power systems
Feature extraction
Forecasting
fusion model
Kernel
LightGBM
Mathematical models
Model accuracy
Neural networks
Predictive models
Support vector machines
ultra-short-term wind power forecasting
Volatility
wind energy
Wind power
Wind power generation
title A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Model%20Combining%20Convolutional%20Neural%20Network%20and%20LightGBM%20Algorithm%20for%20Ultra-Short-Term%20Wind%20Power%20Forecasting&rft.jtitle=IEEE%20access&rft.au=Ju,%20Yun&rft.date=2019&rft.volume=7&rft.spage=28309&rft.epage=28318&rft.pages=28309-28318&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2901920&rft_dat=%3Cproquest_cross%3E2455638268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455638268&rft_id=info:pmid/&rft_ieee_id=8653826&rft_doaj_id=oai_doaj_org_article_1cbe56faad834484ae23ca61e797d838&rfr_iscdi=true