Driver Drowsiness Detection Using Multi-Channel Second Order Blind Identifications

It is well known that blink, yawn, and heart rate changes give clue about a human's mental state, such as drowsiness and fatigue. In this paper, image sequences, as the raw data, are captured from smart phones which serve as non-contact optical sensors. Video streams containing subject's f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.11829-11843
Hauptverfasser: Zhang, Chao, Wu, Xiaopei, Zheng, Xi, Yu, Shui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11843
container_issue
container_start_page 11829
container_title IEEE access
container_volume 7
creator Zhang, Chao
Wu, Xiaopei
Zheng, Xi
Yu, Shui
description It is well known that blink, yawn, and heart rate changes give clue about a human's mental state, such as drowsiness and fatigue. In this paper, image sequences, as the raw data, are captured from smart phones which serve as non-contact optical sensors. Video streams containing subject's facial region are analyzed to identify the physiological sources that are mixed in each image. We then propose a method to extract blood volume pulse and eye blink and yawn signals as multiple independent sources simultaneously by multi-channel second-order blind identification (SOBI) without any other sophisticated processing, such as eye and mouth localizations. An overall decision is made by analyzing the separated source signals in parallel to determine the driver's driving state. The robustness of the proposed method is tested under various illumination contexts and a variety of head motion modes. Experiments on 15 subjects show that the multi-channel SOBI presents a promising framework to accurately detect drowsiness by merging multi-physiological information in a less complex way.
doi_str_mv 10.1109/ACCESS.2019.2891971
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2891971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8607970</ieee_id><doaj_id>oai_doaj_org_article_bcb21269a0994610a5bf498f312c8f95</doaj_id><sourcerecordid>2455610831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-8837b14af00f8e3557ffa1192f0bcd8d9d638e1d3f42142526a8678c3794df913</originalsourceid><addsrcrecordid>eNpNkVtLJDEQhZtFYUX9BfPS4HOPqVw6yaP26O6AIjjrc0jnMpuh7WjSo-y_34wtYr1UcajvVMGpqgWgJQCSl1ddd7PZLDECucRCguTwozrB0MqGMNIefZt_Vuc571ApUSTGT6rHVQpvLtWrFN9zGF3O9cpNzkwhjvVTUbb1_X6YQtP91ePohnrjTBxt_ZBsoa6HUOa1deMUfDD6QOWz6tjrIbvzz35aPd3e_Ol-N3cPv9bd1V1jKKdTIwThPVDtEfLCEca49xpAYo96Y4WVtiXCgSWeYqCY4VaLlgtDuKTWSyCn1Xr2tVHv1EsKzzr9U1EH9SHEtFU6TcEMTvWmx4BbqZGUtAWkWe-pFJ4ANsJLVrwuZq-XFF_3Lk9qF_dpLO8rTBkriCCHi2TeMinmnJz_ugpIHbJQcxbqkIX6zKJQi5kKzrkvQrSIS47Ifw1Dg9M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455610831</pqid></control><display><type>article</type><title>Driver Drowsiness Detection Using Multi-Channel Second Order Blind Identifications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Chao ; Wu, Xiaopei ; Zheng, Xi ; Yu, Shui</creator><creatorcontrib>Zhang, Chao ; Wu, Xiaopei ; Zheng, Xi ; Yu, Shui</creatorcontrib><description>It is well known that blink, yawn, and heart rate changes give clue about a human's mental state, such as drowsiness and fatigue. In this paper, image sequences, as the raw data, are captured from smart phones which serve as non-contact optical sensors. Video streams containing subject's facial region are analyzed to identify the physiological sources that are mixed in each image. We then propose a method to extract blood volume pulse and eye blink and yawn signals as multiple independent sources simultaneously by multi-channel second-order blind identification (SOBI) without any other sophisticated processing, such as eye and mouth localizations. An overall decision is made by analyzing the separated source signals in parallel to determine the driver's driving state. The robustness of the proposed method is tested under various illumination contexts and a variety of head motion modes. Experiments on 15 subjects show that the multi-channel SOBI presents a promising framework to accurately detect drowsiness by merging multi-physiological information in a less complex way.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2891971</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biomedical monitoring ; blink ; Blood volume ; blood volume pulse (BVP) ; Complexity theory ; Decision analysis ; Driver fatigue ; drowsiness detection ; Head movement ; Heart rate ; Heuristic algorithms ; Optical measuring instruments ; Physiology ; second-order blind identification (SOBI) ; Signal processing algorithms ; Vehicles ; Video data ; Yawn</subject><ispartof>IEEE access, 2019, Vol.7, p.11829-11843</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-8837b14af00f8e3557ffa1192f0bcd8d9d638e1d3f42142526a8678c3794df913</citedby><cites>FETCH-LOGICAL-c474t-8837b14af00f8e3557ffa1192f0bcd8d9d638e1d3f42142526a8678c3794df913</cites><orcidid>0000-0002-1100-5566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8607970$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Wu, Xiaopei</creatorcontrib><creatorcontrib>Zheng, Xi</creatorcontrib><creatorcontrib>Yu, Shui</creatorcontrib><title>Driver Drowsiness Detection Using Multi-Channel Second Order Blind Identifications</title><title>IEEE access</title><addtitle>Access</addtitle><description>It is well known that blink, yawn, and heart rate changes give clue about a human's mental state, such as drowsiness and fatigue. In this paper, image sequences, as the raw data, are captured from smart phones which serve as non-contact optical sensors. Video streams containing subject's facial region are analyzed to identify the physiological sources that are mixed in each image. We then propose a method to extract blood volume pulse and eye blink and yawn signals as multiple independent sources simultaneously by multi-channel second-order blind identification (SOBI) without any other sophisticated processing, such as eye and mouth localizations. An overall decision is made by analyzing the separated source signals in parallel to determine the driver's driving state. The robustness of the proposed method is tested under various illumination contexts and a variety of head motion modes. Experiments on 15 subjects show that the multi-channel SOBI presents a promising framework to accurately detect drowsiness by merging multi-physiological information in a less complex way.</description><subject>Biomedical monitoring</subject><subject>blink</subject><subject>Blood volume</subject><subject>blood volume pulse (BVP)</subject><subject>Complexity theory</subject><subject>Decision analysis</subject><subject>Driver fatigue</subject><subject>drowsiness detection</subject><subject>Head movement</subject><subject>Heart rate</subject><subject>Heuristic algorithms</subject><subject>Optical measuring instruments</subject><subject>Physiology</subject><subject>second-order blind identification (SOBI)</subject><subject>Signal processing algorithms</subject><subject>Vehicles</subject><subject>Video data</subject><subject>Yawn</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLJDEQhZtFYUX9BfPS4HOPqVw6yaP26O6AIjjrc0jnMpuh7WjSo-y_34wtYr1UcajvVMGpqgWgJQCSl1ddd7PZLDECucRCguTwozrB0MqGMNIefZt_Vuc571ApUSTGT6rHVQpvLtWrFN9zGF3O9cpNzkwhjvVTUbb1_X6YQtP91ePohnrjTBxt_ZBsoa6HUOa1deMUfDD6QOWz6tjrIbvzz35aPd3e_Ol-N3cPv9bd1V1jKKdTIwThPVDtEfLCEca49xpAYo96Y4WVtiXCgSWeYqCY4VaLlgtDuKTWSyCn1Xr2tVHv1EsKzzr9U1EH9SHEtFU6TcEMTvWmx4BbqZGUtAWkWe-pFJ4ANsJLVrwuZq-XFF_3Lk9qF_dpLO8rTBkriCCHi2TeMinmnJz_ugpIHbJQcxbqkIX6zKJQi5kKzrkvQrSIS47Ifw1Dg9M</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhang, Chao</creator><creator>Wu, Xiaopei</creator><creator>Zheng, Xi</creator><creator>Yu, Shui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1100-5566</orcidid></search><sort><creationdate>2019</creationdate><title>Driver Drowsiness Detection Using Multi-Channel Second Order Blind Identifications</title><author>Zhang, Chao ; Wu, Xiaopei ; Zheng, Xi ; Yu, Shui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-8837b14af00f8e3557ffa1192f0bcd8d9d638e1d3f42142526a8678c3794df913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomedical monitoring</topic><topic>blink</topic><topic>Blood volume</topic><topic>blood volume pulse (BVP)</topic><topic>Complexity theory</topic><topic>Decision analysis</topic><topic>Driver fatigue</topic><topic>drowsiness detection</topic><topic>Head movement</topic><topic>Heart rate</topic><topic>Heuristic algorithms</topic><topic>Optical measuring instruments</topic><topic>Physiology</topic><topic>second-order blind identification (SOBI)</topic><topic>Signal processing algorithms</topic><topic>Vehicles</topic><topic>Video data</topic><topic>Yawn</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chao</creatorcontrib><creatorcontrib>Wu, Xiaopei</creatorcontrib><creatorcontrib>Zheng, Xi</creatorcontrib><creatorcontrib>Yu, Shui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chao</au><au>Wu, Xiaopei</au><au>Zheng, Xi</au><au>Yu, Shui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Driver Drowsiness Detection Using Multi-Channel Second Order Blind Identifications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>11829</spage><epage>11843</epage><pages>11829-11843</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>It is well known that blink, yawn, and heart rate changes give clue about a human's mental state, such as drowsiness and fatigue. In this paper, image sequences, as the raw data, are captured from smart phones which serve as non-contact optical sensors. Video streams containing subject's facial region are analyzed to identify the physiological sources that are mixed in each image. We then propose a method to extract blood volume pulse and eye blink and yawn signals as multiple independent sources simultaneously by multi-channel second-order blind identification (SOBI) without any other sophisticated processing, such as eye and mouth localizations. An overall decision is made by analyzing the separated source signals in parallel to determine the driver's driving state. The robustness of the proposed method is tested under various illumination contexts and a variety of head motion modes. Experiments on 15 subjects show that the multi-channel SOBI presents a promising framework to accurately detect drowsiness by merging multi-physiological information in a less complex way.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2891971</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1100-5566</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.11829-11843
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2891971
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Biomedical monitoring
blink
Blood volume
blood volume pulse (BVP)
Complexity theory
Decision analysis
Driver fatigue
drowsiness detection
Head movement
Heart rate
Heuristic algorithms
Optical measuring instruments
Physiology
second-order blind identification (SOBI)
Signal processing algorithms
Vehicles
Video data
Yawn
title Driver Drowsiness Detection Using Multi-Channel Second Order Blind Identifications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Driver%20Drowsiness%20Detection%20Using%20Multi-Channel%20Second%20Order%20Blind%20Identifications&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Chao&rft.date=2019&rft.volume=7&rft.spage=11829&rft.epage=11843&rft.pages=11829-11843&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2891971&rft_dat=%3Cproquest_cross%3E2455610831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455610831&rft_id=info:pmid/&rft_ieee_id=8607970&rft_doaj_id=oai_doaj_org_article_bcb21269a0994610a5bf498f312c8f95&rfr_iscdi=true