Integrating an Attention Mechanism and Convolution Collaborative Filtering for Document Context-Aware Rating Prediction

Deep learning has become a recent, modern technique for big data processing, with promising results and large potential. For recommender systems, user and item information can be used as input vectors to perform prediction tasks. However, augmenting the number of layers to improve feature extraction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.3826-3835
Hauptverfasser: Zhang, Bangzuo, Zhang, Haobo, Sun, Xiaoxin, Feng, Guozhong, He, Chunguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3835
container_issue
container_start_page 3826
container_title IEEE access
container_volume 7
creator Zhang, Bangzuo
Zhang, Haobo
Sun, Xiaoxin
Feng, Guozhong
He, Chunguang
description Deep learning has become a recent, modern technique for big data processing, with promising results and large potential. For recommender systems, user and item information can be used as input vectors to perform prediction tasks. However, augmenting the number of layers to improve feature extraction will increase the computational complexity considerably and may not achieve the desired results. This paper proposes a method called attention convolution collaborative filtering (Att-ConvCF), which integrates an attention mechanism with a collaborative filtering model to improve the effectiveness of the feature extraction by reassigning the weights of feature vectors. Descriptive documents for the items are used to enrich the background information through a convolutional neural network. Finally, extensive experiments with real-world datasets were performed, and the results showed that Att-ConvCF could effectively extract the feature values of the data and significantly outperform the existing recommendation models.
doi_str_mv 10.1109/ACCESS.2018.2887100
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2018_2887100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8579121</ieee_id><doaj_id>oai_doaj_org_article_d4abafd68add42a6aa34ea28a3791e7c</doaj_id><sourcerecordid>2455609151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e27b2f8e6f947584e6574211703ee4c655d5a1601e407851c678a1d4a6abc2193</originalsourceid><addsrcrecordid>eNpNkU9P3DAQxaOqSCDgE3CJ1HO2Hsf_clyl0K4EalXgbM06k61X2Zg6Xmi_fR2CUH2x9Ty_90Z6RXEFbAXAms_rtr2-v19xBmbFjdHA2IfijINqqlrW6uN_79Picpr2LB-TJanPipfNmGgXMflxV-JYrlOiMfkwlnfkfuHop0OWu7IN43MYjq8_bRgG3IYZeqbyxg-J4oz3IZZfgjsessMMJPqTqvULRip_LgE_InXezSYXxUmPw0SXb_d58Xhz_dB-q26_f92069vKCWZSRVxveW9I9Y3Q0ghSUgsOoFlNJJySspMIigEJpo0Ep7RB6AQq3DoOTX1ebBbfLuDePkV_wPjXBvT2VQhxZzEm7waymdpi3ymDXSd4dsBaEHKDtW6AtMtenxavpxh-H2lKdh-OcczrWy6kVKwBCXmqXqZcDNMUqX9PBWbnwuxSmJ0Ls2-FZepqoTwRvRNG5mgO9T_Jc5Lt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455609151</pqid></control><display><type>article</type><title>Integrating an Attention Mechanism and Convolution Collaborative Filtering for Document Context-Aware Rating Prediction</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Bangzuo ; Zhang, Haobo ; Sun, Xiaoxin ; Feng, Guozhong ; He, Chunguang</creator><creatorcontrib>Zhang, Bangzuo ; Zhang, Haobo ; Sun, Xiaoxin ; Feng, Guozhong ; He, Chunguang</creatorcontrib><description>Deep learning has become a recent, modern technique for big data processing, with promising results and large potential. For recommender systems, user and item information can be used as input vectors to perform prediction tasks. However, augmenting the number of layers to improve feature extraction will increase the computational complexity considerably and may not achieve the desired results. This paper proposes a method called attention convolution collaborative filtering (Att-ConvCF), which integrates an attention mechanism with a collaborative filtering model to improve the effectiveness of the feature extraction by reassigning the weights of feature vectors. Descriptive documents for the items are used to enrich the background information through a convolutional neural network. Finally, extensive experiments with real-world datasets were performed, and the results showed that Att-ConvCF could effectively extract the feature values of the data and significantly outperform the existing recommendation models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2887100</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Attention mechanism ; Collaboration ; collaborative filtering ; Convolution ; Data models ; Data processing ; Feature extraction ; Filtration ; Machine learning ; Predictive models ; recommender system ; Recommender systems ; Task analysis</subject><ispartof>IEEE access, 2019, Vol.7, p.3826-3835</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e27b2f8e6f947584e6574211703ee4c655d5a1601e407851c678a1d4a6abc2193</citedby><cites>FETCH-LOGICAL-c408t-e27b2f8e6f947584e6574211703ee4c655d5a1601e407851c678a1d4a6abc2193</cites><orcidid>0000-0002-1953-2766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8579121$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhang, Bangzuo</creatorcontrib><creatorcontrib>Zhang, Haobo</creatorcontrib><creatorcontrib>Sun, Xiaoxin</creatorcontrib><creatorcontrib>Feng, Guozhong</creatorcontrib><creatorcontrib>He, Chunguang</creatorcontrib><title>Integrating an Attention Mechanism and Convolution Collaborative Filtering for Document Context-Aware Rating Prediction</title><title>IEEE access</title><addtitle>Access</addtitle><description>Deep learning has become a recent, modern technique for big data processing, with promising results and large potential. For recommender systems, user and item information can be used as input vectors to perform prediction tasks. However, augmenting the number of layers to improve feature extraction will increase the computational complexity considerably and may not achieve the desired results. This paper proposes a method called attention convolution collaborative filtering (Att-ConvCF), which integrates an attention mechanism with a collaborative filtering model to improve the effectiveness of the feature extraction by reassigning the weights of feature vectors. Descriptive documents for the items are used to enrich the background information through a convolutional neural network. Finally, extensive experiments with real-world datasets were performed, and the results showed that Att-ConvCF could effectively extract the feature values of the data and significantly outperform the existing recommendation models.</description><subject>Artificial neural networks</subject><subject>Attention mechanism</subject><subject>Collaboration</subject><subject>collaborative filtering</subject><subject>Convolution</subject><subject>Data models</subject><subject>Data processing</subject><subject>Feature extraction</subject><subject>Filtration</subject><subject>Machine learning</subject><subject>Predictive models</subject><subject>recommender system</subject><subject>Recommender systems</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9P3DAQxaOqSCDgE3CJ1HO2Hsf_clyl0K4EalXgbM06k61X2Zg6Xmi_fR2CUH2x9Ty_90Z6RXEFbAXAms_rtr2-v19xBmbFjdHA2IfijINqqlrW6uN_79Picpr2LB-TJanPipfNmGgXMflxV-JYrlOiMfkwlnfkfuHop0OWu7IN43MYjq8_bRgG3IYZeqbyxg-J4oz3IZZfgjsessMMJPqTqvULRip_LgE_InXezSYXxUmPw0SXb_d58Xhz_dB-q26_f92069vKCWZSRVxveW9I9Y3Q0ghSUgsOoFlNJJySspMIigEJpo0Ep7RB6AQq3DoOTX1ebBbfLuDePkV_wPjXBvT2VQhxZzEm7waymdpi3ymDXSd4dsBaEHKDtW6AtMtenxavpxh-H2lKdh-OcczrWy6kVKwBCXmqXqZcDNMUqX9PBWbnwuxSmJ0Ls2-FZepqoTwRvRNG5mgO9T_Jc5Lt</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhang, Bangzuo</creator><creator>Zhang, Haobo</creator><creator>Sun, Xiaoxin</creator><creator>Feng, Guozhong</creator><creator>He, Chunguang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1953-2766</orcidid></search><sort><creationdate>2019</creationdate><title>Integrating an Attention Mechanism and Convolution Collaborative Filtering for Document Context-Aware Rating Prediction</title><author>Zhang, Bangzuo ; Zhang, Haobo ; Sun, Xiaoxin ; Feng, Guozhong ; He, Chunguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e27b2f8e6f947584e6574211703ee4c655d5a1601e407851c678a1d4a6abc2193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Attention mechanism</topic><topic>Collaboration</topic><topic>collaborative filtering</topic><topic>Convolution</topic><topic>Data models</topic><topic>Data processing</topic><topic>Feature extraction</topic><topic>Filtration</topic><topic>Machine learning</topic><topic>Predictive models</topic><topic>recommender system</topic><topic>Recommender systems</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bangzuo</creatorcontrib><creatorcontrib>Zhang, Haobo</creatorcontrib><creatorcontrib>Sun, Xiaoxin</creatorcontrib><creatorcontrib>Feng, Guozhong</creatorcontrib><creatorcontrib>He, Chunguang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bangzuo</au><au>Zhang, Haobo</au><au>Sun, Xiaoxin</au><au>Feng, Guozhong</au><au>He, Chunguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating an Attention Mechanism and Convolution Collaborative Filtering for Document Context-Aware Rating Prediction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>3826</spage><epage>3835</epage><pages>3826-3835</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Deep learning has become a recent, modern technique for big data processing, with promising results and large potential. For recommender systems, user and item information can be used as input vectors to perform prediction tasks. However, augmenting the number of layers to improve feature extraction will increase the computational complexity considerably and may not achieve the desired results. This paper proposes a method called attention convolution collaborative filtering (Att-ConvCF), which integrates an attention mechanism with a collaborative filtering model to improve the effectiveness of the feature extraction by reassigning the weights of feature vectors. Descriptive documents for the items are used to enrich the background information through a convolutional neural network. Finally, extensive experiments with real-world datasets were performed, and the results showed that Att-ConvCF could effectively extract the feature values of the data and significantly outperform the existing recommendation models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2887100</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1953-2766</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.3826-3835
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2018_2887100
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Attention mechanism
Collaboration
collaborative filtering
Convolution
Data models
Data processing
Feature extraction
Filtration
Machine learning
Predictive models
recommender system
Recommender systems
Task analysis
title Integrating an Attention Mechanism and Convolution Collaborative Filtering for Document Context-Aware Rating Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20an%20Attention%20Mechanism%20and%20Convolution%20Collaborative%20Filtering%20for%20Document%20Context-Aware%20Rating%20Prediction&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Bangzuo&rft.date=2019&rft.volume=7&rft.spage=3826&rft.epage=3835&rft.pages=3826-3835&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2887100&rft_dat=%3Cproquest_cross%3E2455609151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455609151&rft_id=info:pmid/&rft_ieee_id=8579121&rft_doaj_id=oai_doaj_org_article_d4abafd68add42a6aa34ea28a3791e7c&rfr_iscdi=true