Integrating an Attention Mechanism and Convolution Collaborative Filtering for Document Context-Aware Rating Prediction
Deep learning has become a recent, modern technique for big data processing, with promising results and large potential. For recommender systems, user and item information can be used as input vectors to perform prediction tasks. However, augmenting the number of layers to improve feature extraction...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.3826-3835 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3835 |
---|---|
container_issue | |
container_start_page | 3826 |
container_title | IEEE access |
container_volume | 7 |
creator | Zhang, Bangzuo Zhang, Haobo Sun, Xiaoxin Feng, Guozhong He, Chunguang |
description | Deep learning has become a recent, modern technique for big data processing, with promising results and large potential. For recommender systems, user and item information can be used as input vectors to perform prediction tasks. However, augmenting the number of layers to improve feature extraction will increase the computational complexity considerably and may not achieve the desired results. This paper proposes a method called attention convolution collaborative filtering (Att-ConvCF), which integrates an attention mechanism with a collaborative filtering model to improve the effectiveness of the feature extraction by reassigning the weights of feature vectors. Descriptive documents for the items are used to enrich the background information through a convolutional neural network. Finally, extensive experiments with real-world datasets were performed, and the results showed that Att-ConvCF could effectively extract the feature values of the data and significantly outperform the existing recommendation models. |
doi_str_mv | 10.1109/ACCESS.2018.2887100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2018_2887100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8579121</ieee_id><doaj_id>oai_doaj_org_article_d4abafd68add42a6aa34ea28a3791e7c</doaj_id><sourcerecordid>2455609151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-e27b2f8e6f947584e6574211703ee4c655d5a1601e407851c678a1d4a6abc2193</originalsourceid><addsrcrecordid>eNpNkU9P3DAQxaOqSCDgE3CJ1HO2Hsf_clyl0K4EalXgbM06k61X2Zg6Xmi_fR2CUH2x9Ty_90Z6RXEFbAXAms_rtr2-v19xBmbFjdHA2IfijINqqlrW6uN_79Picpr2LB-TJanPipfNmGgXMflxV-JYrlOiMfkwlnfkfuHop0OWu7IN43MYjq8_bRgG3IYZeqbyxg-J4oz3IZZfgjsessMMJPqTqvULRip_LgE_InXezSYXxUmPw0SXb_d58Xhz_dB-q26_f92069vKCWZSRVxveW9I9Y3Q0ghSUgsOoFlNJJySspMIigEJpo0Ep7RB6AQq3DoOTX1ebBbfLuDePkV_wPjXBvT2VQhxZzEm7waymdpi3ymDXSd4dsBaEHKDtW6AtMtenxavpxh-H2lKdh-OcczrWy6kVKwBCXmqXqZcDNMUqX9PBWbnwuxSmJ0Ls2-FZepqoTwRvRNG5mgO9T_Jc5Lt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455609151</pqid></control><display><type>article</type><title>Integrating an Attention Mechanism and Convolution Collaborative Filtering for Document Context-Aware Rating Prediction</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Bangzuo ; Zhang, Haobo ; Sun, Xiaoxin ; Feng, Guozhong ; He, Chunguang</creator><creatorcontrib>Zhang, Bangzuo ; Zhang, Haobo ; Sun, Xiaoxin ; Feng, Guozhong ; He, Chunguang</creatorcontrib><description>Deep learning has become a recent, modern technique for big data processing, with promising results and large potential. For recommender systems, user and item information can be used as input vectors to perform prediction tasks. However, augmenting the number of layers to improve feature extraction will increase the computational complexity considerably and may not achieve the desired results. This paper proposes a method called attention convolution collaborative filtering (Att-ConvCF), which integrates an attention mechanism with a collaborative filtering model to improve the effectiveness of the feature extraction by reassigning the weights of feature vectors. Descriptive documents for the items are used to enrich the background information through a convolutional neural network. Finally, extensive experiments with real-world datasets were performed, and the results showed that Att-ConvCF could effectively extract the feature values of the data and significantly outperform the existing recommendation models.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2887100</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Attention mechanism ; Collaboration ; collaborative filtering ; Convolution ; Data models ; Data processing ; Feature extraction ; Filtration ; Machine learning ; Predictive models ; recommender system ; Recommender systems ; Task analysis</subject><ispartof>IEEE access, 2019, Vol.7, p.3826-3835</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-e27b2f8e6f947584e6574211703ee4c655d5a1601e407851c678a1d4a6abc2193</citedby><cites>FETCH-LOGICAL-c408t-e27b2f8e6f947584e6574211703ee4c655d5a1601e407851c678a1d4a6abc2193</cites><orcidid>0000-0002-1953-2766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8579121$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Zhang, Bangzuo</creatorcontrib><creatorcontrib>Zhang, Haobo</creatorcontrib><creatorcontrib>Sun, Xiaoxin</creatorcontrib><creatorcontrib>Feng, Guozhong</creatorcontrib><creatorcontrib>He, Chunguang</creatorcontrib><title>Integrating an Attention Mechanism and Convolution Collaborative Filtering for Document Context-Aware Rating Prediction</title><title>IEEE access</title><addtitle>Access</addtitle><description>Deep learning has become a recent, modern technique for big data processing, with promising results and large potential. For recommender systems, user and item information can be used as input vectors to perform prediction tasks. However, augmenting the number of layers to improve feature extraction will increase the computational complexity considerably and may not achieve the desired results. This paper proposes a method called attention convolution collaborative filtering (Att-ConvCF), which integrates an attention mechanism with a collaborative filtering model to improve the effectiveness of the feature extraction by reassigning the weights of feature vectors. Descriptive documents for the items are used to enrich the background information through a convolutional neural network. Finally, extensive experiments with real-world datasets were performed, and the results showed that Att-ConvCF could effectively extract the feature values of the data and significantly outperform the existing recommendation models.</description><subject>Artificial neural networks</subject><subject>Attention mechanism</subject><subject>Collaboration</subject><subject>collaborative filtering</subject><subject>Convolution</subject><subject>Data models</subject><subject>Data processing</subject><subject>Feature extraction</subject><subject>Filtration</subject><subject>Machine learning</subject><subject>Predictive models</subject><subject>recommender system</subject><subject>Recommender systems</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9P3DAQxaOqSCDgE3CJ1HO2Hsf_clyl0K4EalXgbM06k61X2Zg6Xmi_fR2CUH2x9Ty_90Z6RXEFbAXAms_rtr2-v19xBmbFjdHA2IfijINqqlrW6uN_79Picpr2LB-TJanPipfNmGgXMflxV-JYrlOiMfkwlnfkfuHop0OWu7IN43MYjq8_bRgG3IYZeqbyxg-J4oz3IZZfgjsessMMJPqTqvULRip_LgE_InXezSYXxUmPw0SXb_d58Xhz_dB-q26_f92069vKCWZSRVxveW9I9Y3Q0ghSUgsOoFlNJJySspMIigEJpo0Ep7RB6AQq3DoOTX1ebBbfLuDePkV_wPjXBvT2VQhxZzEm7waymdpi3ymDXSd4dsBaEHKDtW6AtMtenxavpxh-H2lKdh-OcczrWy6kVKwBCXmqXqZcDNMUqX9PBWbnwuxSmJ0Ls2-FZepqoTwRvRNG5mgO9T_Jc5Lt</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zhang, Bangzuo</creator><creator>Zhang, Haobo</creator><creator>Sun, Xiaoxin</creator><creator>Feng, Guozhong</creator><creator>He, Chunguang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1953-2766</orcidid></search><sort><creationdate>2019</creationdate><title>Integrating an Attention Mechanism and Convolution Collaborative Filtering for Document Context-Aware Rating Prediction</title><author>Zhang, Bangzuo ; Zhang, Haobo ; Sun, Xiaoxin ; Feng, Guozhong ; He, Chunguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-e27b2f8e6f947584e6574211703ee4c655d5a1601e407851c678a1d4a6abc2193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Attention mechanism</topic><topic>Collaboration</topic><topic>collaborative filtering</topic><topic>Convolution</topic><topic>Data models</topic><topic>Data processing</topic><topic>Feature extraction</topic><topic>Filtration</topic><topic>Machine learning</topic><topic>Predictive models</topic><topic>recommender system</topic><topic>Recommender systems</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bangzuo</creatorcontrib><creatorcontrib>Zhang, Haobo</creatorcontrib><creatorcontrib>Sun, Xiaoxin</creatorcontrib><creatorcontrib>Feng, Guozhong</creatorcontrib><creatorcontrib>He, Chunguang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bangzuo</au><au>Zhang, Haobo</au><au>Sun, Xiaoxin</au><au>Feng, Guozhong</au><au>He, Chunguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating an Attention Mechanism and Convolution Collaborative Filtering for Document Context-Aware Rating Prediction</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>3826</spage><epage>3835</epage><pages>3826-3835</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Deep learning has become a recent, modern technique for big data processing, with promising results and large potential. For recommender systems, user and item information can be used as input vectors to perform prediction tasks. However, augmenting the number of layers to improve feature extraction will increase the computational complexity considerably and may not achieve the desired results. This paper proposes a method called attention convolution collaborative filtering (Att-ConvCF), which integrates an attention mechanism with a collaborative filtering model to improve the effectiveness of the feature extraction by reassigning the weights of feature vectors. Descriptive documents for the items are used to enrich the background information through a convolutional neural network. Finally, extensive experiments with real-world datasets were performed, and the results showed that Att-ConvCF could effectively extract the feature values of the data and significantly outperform the existing recommendation models.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2887100</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1953-2766</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.3826-3835 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2018_2887100 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks Attention mechanism Collaboration collaborative filtering Convolution Data models Data processing Feature extraction Filtration Machine learning Predictive models recommender system Recommender systems Task analysis |
title | Integrating an Attention Mechanism and Convolution Collaborative Filtering for Document Context-Aware Rating Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20an%20Attention%20Mechanism%20and%20Convolution%20Collaborative%20Filtering%20for%20Document%20Context-Aware%20Rating%20Prediction&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Bangzuo&rft.date=2019&rft.volume=7&rft.spage=3826&rft.epage=3835&rft.pages=3826-3835&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2887100&rft_dat=%3Cproquest_cross%3E2455609151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455609151&rft_id=info:pmid/&rft_ieee_id=8579121&rft_doaj_id=oai_doaj_org_article_d4abafd68add42a6aa34ea28a3791e7c&rfr_iscdi=true |