Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach
Accurate prediction of remaining useful life (RUL) of lithium-ion battery plays an increasingly crucial role in the intelligent battery health management systems. The advances in deep learning introduce new data-driven approaches to this problem. This paper proposes an integrated deep learning appro...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018-01, Vol.6, p.50587-50598 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50598 |
---|---|
container_issue | |
container_start_page | 50587 |
container_title | IEEE access |
container_volume | 6 |
creator | Ren, Lei Zhao, Li Hong, Sheng Zhao, Shiqiang Wang, Hao Zhang, Lin |
description | Accurate prediction of remaining useful life (RUL) of lithium-ion battery plays an increasingly crucial role in the intelligent battery health management systems. The advances in deep learning introduce new data-driven approaches to this problem. This paper proposes an integrated deep learning approach for RUL prediction of lithium-ion battery by integrating autoencoder with deep neural network (DNN). First, we present a multi-dimensional feature extraction method with autoencoder model to represent battery health degradation. Then, the RUL prediction model-based DNN is trained for multi-battery remaining cycle life estimation. The proposed approach is applied to the real data set of lithium-ion battery cycle life from NASA, and the experiment results show that the proposed approach can improve the accuracy of RUL prediction. |
doi_str_mv | 10.1109/ACCESS.2018.2858856 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2018_2858856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8418374</ieee_id><doaj_id>oai_doaj_org_article_8e20df18456541a99e4c67cfb52d2079</doaj_id><sourcerecordid>2455898838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-9dd121f1fd6256c8fee69cb8a7f092d21e9fcea4fb0a2ddd247ca7ba74fdaa183</originalsourceid><addsrcrecordid>eNpNUctuwjAQjKpWKqJ8AZdIPYfajp3YvVH6QkJqBeVsLfYajIBQJxz4-xqCUH1Z72hnZleTJH1KBpQS9TQcjd5mswEjVA6YFFKK4ibpMFqoLBd5cfvvf5_06npN4pMREmUnmU5xC37nd8t0XqM7bNKJd5h-B7TeNL7apa4KEWtW_rDNxrF_gabBcHxOh-kr4j6dIIQzf7jfhwrM6iG5c7CpsXep3WT-_vYz-swmXx_j0XCSGcF4kylrKaOOOlswURjpEAtlFhJKRxSzjKJyBoG7BQFmrWW8NFAuoOTOAlCZd5Nxq2srWOt98FsIR12B12egCksNofFmg1oiI9ZRyUUhOAWlkJuiNG4hohEpVdR6bLXiCb8HrBu9rg5hF9fXjAshlZT5yTFvp0yo6jqgu7pSok9Z6DYLfcpCX7KIrH7L8oh4ZUgeTyh5_gejiYUU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455898838</pqid></control><display><type>article</type><title>Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ren, Lei ; Zhao, Li ; Hong, Sheng ; Zhao, Shiqiang ; Wang, Hao ; Zhang, Lin</creator><creatorcontrib>Ren, Lei ; Zhao, Li ; Hong, Sheng ; Zhao, Shiqiang ; Wang, Hao ; Zhang, Lin</creatorcontrib><description>Accurate prediction of remaining useful life (RUL) of lithium-ion battery plays an increasingly crucial role in the intelligent battery health management systems. The advances in deep learning introduce new data-driven approaches to this problem. This paper proposes an integrated deep learning approach for RUL prediction of lithium-ion battery by integrating autoencoder with deep neural network (DNN). First, we present a multi-dimensional feature extraction method with autoencoder model to represent battery health degradation. Then, the RUL prediction model-based DNN is trained for multi-battery remaining cycle life estimation. The proposed approach is applied to the real data set of lithium-ion battery cycle life from NASA, and the experiment results show that the proposed approach can improve the accuracy of RUL prediction.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2858856</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Battery cycles ; Deep learning ; deep neural network ; Feature extraction ; Life prediction ; Lithium ; Lithium-ion batteries ; Lithium-ion battery ; Machine learning ; Management systems ; Prediction models ; Predictive models ; Rechargeable batteries ; remaining useful life ; RUL prediction model ; Temperature measurement ; Useful life ; Voltage measurement</subject><ispartof>IEEE access, 2018-01, Vol.6, p.50587-50598</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-9dd121f1fd6256c8fee69cb8a7f092d21e9fcea4fb0a2ddd247ca7ba74fdaa183</citedby><cites>FETCH-LOGICAL-c524t-9dd121f1fd6256c8fee69cb8a7f092d21e9fcea4fb0a2ddd247ca7ba74fdaa183</cites><orcidid>0000-0001-6346-6930 ; 0000-0002-9219-3756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8418374$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Ren, Lei</creatorcontrib><creatorcontrib>Zhao, Li</creatorcontrib><creatorcontrib>Hong, Sheng</creatorcontrib><creatorcontrib>Zhao, Shiqiang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><title>Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accurate prediction of remaining useful life (RUL) of lithium-ion battery plays an increasingly crucial role in the intelligent battery health management systems. The advances in deep learning introduce new data-driven approaches to this problem. This paper proposes an integrated deep learning approach for RUL prediction of lithium-ion battery by integrating autoencoder with deep neural network (DNN). First, we present a multi-dimensional feature extraction method with autoencoder model to represent battery health degradation. Then, the RUL prediction model-based DNN is trained for multi-battery remaining cycle life estimation. The proposed approach is applied to the real data set of lithium-ion battery cycle life from NASA, and the experiment results show that the proposed approach can improve the accuracy of RUL prediction.</description><subject>Artificial neural networks</subject><subject>Battery cycles</subject><subject>Deep learning</subject><subject>deep neural network</subject><subject>Feature extraction</subject><subject>Life prediction</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Machine learning</subject><subject>Management systems</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Rechargeable batteries</subject><subject>remaining useful life</subject><subject>RUL prediction model</subject><subject>Temperature measurement</subject><subject>Useful life</subject><subject>Voltage measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctuwjAQjKpWKqJ8AZdIPYfajp3YvVH6QkJqBeVsLfYajIBQJxz4-xqCUH1Z72hnZleTJH1KBpQS9TQcjd5mswEjVA6YFFKK4ibpMFqoLBd5cfvvf5_06npN4pMREmUnmU5xC37nd8t0XqM7bNKJd5h-B7TeNL7apa4KEWtW_rDNxrF_gabBcHxOh-kr4j6dIIQzf7jfhwrM6iG5c7CpsXep3WT-_vYz-swmXx_j0XCSGcF4kylrKaOOOlswURjpEAtlFhJKRxSzjKJyBoG7BQFmrWW8NFAuoOTOAlCZd5Nxq2srWOt98FsIR12B12egCksNofFmg1oiI9ZRyUUhOAWlkJuiNG4hohEpVdR6bLXiCb8HrBu9rg5hF9fXjAshlZT5yTFvp0yo6jqgu7pSok9Z6DYLfcpCX7KIrH7L8oh4ZUgeTyh5_gejiYUU</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Ren, Lei</creator><creator>Zhao, Li</creator><creator>Hong, Sheng</creator><creator>Zhao, Shiqiang</creator><creator>Wang, Hao</creator><creator>Zhang, Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6346-6930</orcidid><orcidid>https://orcid.org/0000-0002-9219-3756</orcidid></search><sort><creationdate>20180101</creationdate><title>Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach</title><author>Ren, Lei ; Zhao, Li ; Hong, Sheng ; Zhao, Shiqiang ; Wang, Hao ; Zhang, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-9dd121f1fd6256c8fee69cb8a7f092d21e9fcea4fb0a2ddd247ca7ba74fdaa183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Battery cycles</topic><topic>Deep learning</topic><topic>deep neural network</topic><topic>Feature extraction</topic><topic>Life prediction</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Machine learning</topic><topic>Management systems</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Rechargeable batteries</topic><topic>remaining useful life</topic><topic>RUL prediction model</topic><topic>Temperature measurement</topic><topic>Useful life</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Lei</creatorcontrib><creatorcontrib>Zhao, Li</creatorcontrib><creatorcontrib>Hong, Sheng</creatorcontrib><creatorcontrib>Zhao, Shiqiang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Lei</au><au>Zhao, Li</au><au>Hong, Sheng</au><au>Zhao, Shiqiang</au><au>Wang, Hao</au><au>Zhang, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>50587</spage><epage>50598</epage><pages>50587-50598</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accurate prediction of remaining useful life (RUL) of lithium-ion battery plays an increasingly crucial role in the intelligent battery health management systems. The advances in deep learning introduce new data-driven approaches to this problem. This paper proposes an integrated deep learning approach for RUL prediction of lithium-ion battery by integrating autoencoder with deep neural network (DNN). First, we present a multi-dimensional feature extraction method with autoencoder model to represent battery health degradation. Then, the RUL prediction model-based DNN is trained for multi-battery remaining cycle life estimation. The proposed approach is applied to the real data set of lithium-ion battery cycle life from NASA, and the experiment results show that the proposed approach can improve the accuracy of RUL prediction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2858856</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6346-6930</orcidid><orcidid>https://orcid.org/0000-0002-9219-3756</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.50587-50598 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2018_2858856 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks Battery cycles Deep learning deep neural network Feature extraction Life prediction Lithium Lithium-ion batteries Lithium-ion battery Machine learning Management systems Prediction models Predictive models Rechargeable batteries remaining useful life RUL prediction model Temperature measurement Useful life Voltage measurement |
title | Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remaining%20Useful%20Life%20Prediction%20for%20Lithium-Ion%20Battery:%20A%20Deep%20Learning%20Approach&rft.jtitle=IEEE%20access&rft.au=Ren,%20Lei&rft.date=2018-01-01&rft.volume=6&rft.spage=50587&rft.epage=50598&rft.pages=50587-50598&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2858856&rft_dat=%3Cproquest_cross%3E2455898838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455898838&rft_id=info:pmid/&rft_ieee_id=8418374&rft_doaj_id=oai_doaj_org_article_8e20df18456541a99e4c67cfb52d2079&rfr_iscdi=true |