Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach

Accurate prediction of remaining useful life (RUL) of lithium-ion battery plays an increasingly crucial role in the intelligent battery health management systems. The advances in deep learning introduce new data-driven approaches to this problem. This paper proposes an integrated deep learning appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.50587-50598
Hauptverfasser: Ren, Lei, Zhao, Li, Hong, Sheng, Zhao, Shiqiang, Wang, Hao, Zhang, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50598
container_issue
container_start_page 50587
container_title IEEE access
container_volume 6
creator Ren, Lei
Zhao, Li
Hong, Sheng
Zhao, Shiqiang
Wang, Hao
Zhang, Lin
description Accurate prediction of remaining useful life (RUL) of lithium-ion battery plays an increasingly crucial role in the intelligent battery health management systems. The advances in deep learning introduce new data-driven approaches to this problem. This paper proposes an integrated deep learning approach for RUL prediction of lithium-ion battery by integrating autoencoder with deep neural network (DNN). First, we present a multi-dimensional feature extraction method with autoencoder model to represent battery health degradation. Then, the RUL prediction model-based DNN is trained for multi-battery remaining cycle life estimation. The proposed approach is applied to the real data set of lithium-ion battery cycle life from NASA, and the experiment results show that the proposed approach can improve the accuracy of RUL prediction.
doi_str_mv 10.1109/ACCESS.2018.2858856
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2018_2858856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8418374</ieee_id><doaj_id>oai_doaj_org_article_8e20df18456541a99e4c67cfb52d2079</doaj_id><sourcerecordid>2455898838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-9dd121f1fd6256c8fee69cb8a7f092d21e9fcea4fb0a2ddd247ca7ba74fdaa183</originalsourceid><addsrcrecordid>eNpNUctuwjAQjKpWKqJ8AZdIPYfajp3YvVH6QkJqBeVsLfYajIBQJxz4-xqCUH1Z72hnZleTJH1KBpQS9TQcjd5mswEjVA6YFFKK4ibpMFqoLBd5cfvvf5_06npN4pMREmUnmU5xC37nd8t0XqM7bNKJd5h-B7TeNL7apa4KEWtW_rDNxrF_gabBcHxOh-kr4j6dIIQzf7jfhwrM6iG5c7CpsXep3WT-_vYz-swmXx_j0XCSGcF4kylrKaOOOlswURjpEAtlFhJKRxSzjKJyBoG7BQFmrWW8NFAuoOTOAlCZd5Nxq2srWOt98FsIR12B12egCksNofFmg1oiI9ZRyUUhOAWlkJuiNG4hohEpVdR6bLXiCb8HrBu9rg5hF9fXjAshlZT5yTFvp0yo6jqgu7pSok9Z6DYLfcpCX7KIrH7L8oh4ZUgeTyh5_gejiYUU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455898838</pqid></control><display><type>article</type><title>Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ren, Lei ; Zhao, Li ; Hong, Sheng ; Zhao, Shiqiang ; Wang, Hao ; Zhang, Lin</creator><creatorcontrib>Ren, Lei ; Zhao, Li ; Hong, Sheng ; Zhao, Shiqiang ; Wang, Hao ; Zhang, Lin</creatorcontrib><description>Accurate prediction of remaining useful life (RUL) of lithium-ion battery plays an increasingly crucial role in the intelligent battery health management systems. The advances in deep learning introduce new data-driven approaches to this problem. This paper proposes an integrated deep learning approach for RUL prediction of lithium-ion battery by integrating autoencoder with deep neural network (DNN). First, we present a multi-dimensional feature extraction method with autoencoder model to represent battery health degradation. Then, the RUL prediction model-based DNN is trained for multi-battery remaining cycle life estimation. The proposed approach is applied to the real data set of lithium-ion battery cycle life from NASA, and the experiment results show that the proposed approach can improve the accuracy of RUL prediction.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2858856</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Battery cycles ; Deep learning ; deep neural network ; Feature extraction ; Life prediction ; Lithium ; Lithium-ion batteries ; Lithium-ion battery ; Machine learning ; Management systems ; Prediction models ; Predictive models ; Rechargeable batteries ; remaining useful life ; RUL prediction model ; Temperature measurement ; Useful life ; Voltage measurement</subject><ispartof>IEEE access, 2018-01, Vol.6, p.50587-50598</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-9dd121f1fd6256c8fee69cb8a7f092d21e9fcea4fb0a2ddd247ca7ba74fdaa183</citedby><cites>FETCH-LOGICAL-c524t-9dd121f1fd6256c8fee69cb8a7f092d21e9fcea4fb0a2ddd247ca7ba74fdaa183</cites><orcidid>0000-0001-6346-6930 ; 0000-0002-9219-3756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8418374$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Ren, Lei</creatorcontrib><creatorcontrib>Zhao, Li</creatorcontrib><creatorcontrib>Hong, Sheng</creatorcontrib><creatorcontrib>Zhao, Shiqiang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><title>Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accurate prediction of remaining useful life (RUL) of lithium-ion battery plays an increasingly crucial role in the intelligent battery health management systems. The advances in deep learning introduce new data-driven approaches to this problem. This paper proposes an integrated deep learning approach for RUL prediction of lithium-ion battery by integrating autoencoder with deep neural network (DNN). First, we present a multi-dimensional feature extraction method with autoencoder model to represent battery health degradation. Then, the RUL prediction model-based DNN is trained for multi-battery remaining cycle life estimation. The proposed approach is applied to the real data set of lithium-ion battery cycle life from NASA, and the experiment results show that the proposed approach can improve the accuracy of RUL prediction.</description><subject>Artificial neural networks</subject><subject>Battery cycles</subject><subject>Deep learning</subject><subject>deep neural network</subject><subject>Feature extraction</subject><subject>Life prediction</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Machine learning</subject><subject>Management systems</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Rechargeable batteries</subject><subject>remaining useful life</subject><subject>RUL prediction model</subject><subject>Temperature measurement</subject><subject>Useful life</subject><subject>Voltage measurement</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctuwjAQjKpWKqJ8AZdIPYfajp3YvVH6QkJqBeVsLfYajIBQJxz4-xqCUH1Z72hnZleTJH1KBpQS9TQcjd5mswEjVA6YFFKK4ibpMFqoLBd5cfvvf5_06npN4pMREmUnmU5xC37nd8t0XqM7bNKJd5h-B7TeNL7apa4KEWtW_rDNxrF_gabBcHxOh-kr4j6dIIQzf7jfhwrM6iG5c7CpsXep3WT-_vYz-swmXx_j0XCSGcF4kylrKaOOOlswURjpEAtlFhJKRxSzjKJyBoG7BQFmrWW8NFAuoOTOAlCZd5Nxq2srWOt98FsIR12B12egCksNofFmg1oiI9ZRyUUhOAWlkJuiNG4hohEpVdR6bLXiCb8HrBu9rg5hF9fXjAshlZT5yTFvp0yo6jqgu7pSok9Z6DYLfcpCX7KIrH7L8oh4ZUgeTyh5_gejiYUU</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Ren, Lei</creator><creator>Zhao, Li</creator><creator>Hong, Sheng</creator><creator>Zhao, Shiqiang</creator><creator>Wang, Hao</creator><creator>Zhang, Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6346-6930</orcidid><orcidid>https://orcid.org/0000-0002-9219-3756</orcidid></search><sort><creationdate>20180101</creationdate><title>Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach</title><author>Ren, Lei ; Zhao, Li ; Hong, Sheng ; Zhao, Shiqiang ; Wang, Hao ; Zhang, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-9dd121f1fd6256c8fee69cb8a7f092d21e9fcea4fb0a2ddd247ca7ba74fdaa183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Battery cycles</topic><topic>Deep learning</topic><topic>deep neural network</topic><topic>Feature extraction</topic><topic>Life prediction</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Machine learning</topic><topic>Management systems</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Rechargeable batteries</topic><topic>remaining useful life</topic><topic>RUL prediction model</topic><topic>Temperature measurement</topic><topic>Useful life</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Lei</creatorcontrib><creatorcontrib>Zhao, Li</creatorcontrib><creatorcontrib>Hong, Sheng</creatorcontrib><creatorcontrib>Zhao, Shiqiang</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Lei</au><au>Zhao, Li</au><au>Hong, Sheng</au><au>Zhao, Shiqiang</au><au>Wang, Hao</au><au>Zhang, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>50587</spage><epage>50598</epage><pages>50587-50598</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accurate prediction of remaining useful life (RUL) of lithium-ion battery plays an increasingly crucial role in the intelligent battery health management systems. The advances in deep learning introduce new data-driven approaches to this problem. This paper proposes an integrated deep learning approach for RUL prediction of lithium-ion battery by integrating autoencoder with deep neural network (DNN). First, we present a multi-dimensional feature extraction method with autoencoder model to represent battery health degradation. Then, the RUL prediction model-based DNN is trained for multi-battery remaining cycle life estimation. The proposed approach is applied to the real data set of lithium-ion battery cycle life from NASA, and the experiment results show that the proposed approach can improve the accuracy of RUL prediction.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2858856</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6346-6930</orcidid><orcidid>https://orcid.org/0000-0002-9219-3756</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.50587-50598
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2018_2858856
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Battery cycles
Deep learning
deep neural network
Feature extraction
Life prediction
Lithium
Lithium-ion batteries
Lithium-ion battery
Machine learning
Management systems
Prediction models
Predictive models
Rechargeable batteries
remaining useful life
RUL prediction model
Temperature measurement
Useful life
Voltage measurement
title Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T05%3A13%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remaining%20Useful%20Life%20Prediction%20for%20Lithium-Ion%20Battery:%20A%20Deep%20Learning%20Approach&rft.jtitle=IEEE%20access&rft.au=Ren,%20Lei&rft.date=2018-01-01&rft.volume=6&rft.spage=50587&rft.epage=50598&rft.pages=50587-50598&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2858856&rft_dat=%3Cproquest_cross%3E2455898838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455898838&rft_id=info:pmid/&rft_ieee_id=8418374&rft_doaj_id=oai_doaj_org_article_8e20df18456541a99e4c67cfb52d2079&rfr_iscdi=true