Remaining Useful Life Prediction for Lithium-Ion Battery: A Deep Learning Approach

Accurate prediction of remaining useful life (RUL) of lithium-ion battery plays an increasingly crucial role in the intelligent battery health management systems. The advances in deep learning introduce new data-driven approaches to this problem. This paper proposes an integrated deep learning appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.50587-50598
Hauptverfasser: Ren, Lei, Zhao, Li, Hong, Sheng, Zhao, Shiqiang, Wang, Hao, Zhang, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate prediction of remaining useful life (RUL) of lithium-ion battery plays an increasingly crucial role in the intelligent battery health management systems. The advances in deep learning introduce new data-driven approaches to this problem. This paper proposes an integrated deep learning approach for RUL prediction of lithium-ion battery by integrating autoencoder with deep neural network (DNN). First, we present a multi-dimensional feature extraction method with autoencoder model to represent battery health degradation. Then, the RUL prediction model-based DNN is trained for multi-battery remaining cycle life estimation. The proposed approach is applied to the real data set of lithium-ion battery cycle life from NASA, and the experiment results show that the proposed approach can improve the accuracy of RUL prediction.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2018.2858856