Joint RRH Activation and Robust Coordinated Beamforming for Massive MIMO Heterogeneous Cloud Radio Access Networks

Heterogeneous cloud radio access networks (H-CRANs), proposed to boost both spectral and energy efficiency while reducing the signaling overhead, have been regarded as a promising paradigm for fifth-generation wireless communication systems. To reduce the network power consumption, in this paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.40506-40518
Hauptverfasser: Zhang, Kai, Tan, Weiqiang, Xu, Guixian, Yin, Changchuan, Liu, Wen, Li, Chunguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40518
container_issue
container_start_page 40506
container_title IEEE access
container_volume 6
creator Zhang, Kai
Tan, Weiqiang
Xu, Guixian
Yin, Changchuan
Liu, Wen
Li, Chunguo
description Heterogeneous cloud radio access networks (H-CRANs), proposed to boost both spectral and energy efficiency while reducing the signaling overhead, have been regarded as a promising paradigm for fifth-generation wireless communication systems. To reduce the network power consumption, in this paper, we propose a joint remote radio head (RRH) activation and outage constrained coordinated beamforming (CoBF) algorithm for massive multiple-input multiple-output H-CRANs. Considering the imperfect channel state information and power consumption of fronthaul links and individual transmission power limitations at the RRHs, the downlink network power minimization problem subject to the constraints of specified outage probabilities at each macro user equipment (MUE) and each RRH user equipment (RUE) is reformulated. For a given RRH activation set, we first derive a conservative convex approximation for the outage constraints of RUEs by using semidefinite relaxation and an extended Bernstein-type inequality, while a closed-form expression is obtained for the outage constraints of MUEs. Then, we reformulate the nonconvex problem into a semidefinite program. Moreover, we propose a low-complexity algorithm to perform the joint optimization of the RRH activation and robust CoBF by using the group sparse beamforming method through the weighted \ell _{1}/\ell _{2} norm reformulation, where the group sparsity patterns of beamformers are used to guide the RRHs that can be switched off. Simulation results demonstrate that the proposed algorithm can significantly reduce the network power consumption by 28% in the low signal-to-interference-plus noise ratio scenario. In addition, the algorithm can approach the system performance of the exhaustive search algorithm while having a much lower computational complexity.
doi_str_mv 10.1109/ACCESS.2018.2856831
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2018_2856831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8412494</ieee_id><doaj_id>oai_doaj_org_article_eae4d47e22aa427295a0066b54b0a7dc</doaj_id><sourcerecordid>2456066366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-2613d8372c13d14636cf6c6363a41ed640bc56be42bedef06f6b8e6c7b15d98f3</originalsourceid><addsrcrecordid>eNpNkd1qGzEQhUVpocHxE-RG0Gu7-lut9tJZktglbsBpr4VWmjVy7VUiaRP69pW7IWQYOGKY843gIHRFyZJS0nxfte3N4-OSEaqWTFVScfoJXTAqmwWvuPz84f0VzVM6kFKqjKr6AsUfwQ8Z73ZrvLLZv5jsw4DN4PAudGPKuA0hOj-YDA5fgzn1IZ78sMdF8dak5F8AbzfbB7yGDDHsYYAwJtwew1gYxvlQwBZSwj8hv4b4J12iL705Jpi_6Qz9vr351a4X9w93m3Z1v7CCqLxgknKneM1sUSokl7aXtgg3goKTgnS2kh0I1oGDnshedgqkrTtauUb1fIY2E9cFc9BP0Z9M_KuD8fr_IMS9NjF7ewQNBoQTNTBmjGA1aypDiJRdJTpiamcL69vEeorheYSU9SGMcSjf10xUsuzy0jPEpy0bQ0oR-verlOhzVnrKSp-z0m9ZFdfV5PIA8O5QgjLRCP4P4hqQBw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456066366</pqid></control><display><type>article</type><title>Joint RRH Activation and Robust Coordinated Beamforming for Massive MIMO Heterogeneous Cloud Radio Access Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhang, Kai ; Tan, Weiqiang ; Xu, Guixian ; Yin, Changchuan ; Liu, Wen ; Li, Chunguo</creator><creatorcontrib>Zhang, Kai ; Tan, Weiqiang ; Xu, Guixian ; Yin, Changchuan ; Liu, Wen ; Li, Chunguo</creatorcontrib><description>Heterogeneous cloud radio access networks (H-CRANs), proposed to boost both spectral and energy efficiency while reducing the signaling overhead, have been regarded as a promising paradigm for fifth-generation wireless communication systems. To reduce the network power consumption, in this paper, we propose a joint remote radio head (RRH) activation and outage constrained coordinated beamforming (CoBF) algorithm for massive multiple-input multiple-output H-CRANs. Considering the imperfect channel state information and power consumption of fronthaul links and individual transmission power limitations at the RRHs, the downlink network power minimization problem subject to the constraints of specified outage probabilities at each macro user equipment (MUE) and each RRH user equipment (RUE) is reformulated. For a given RRH activation set, we first derive a conservative convex approximation for the outage constraints of RUEs by using semidefinite relaxation and an extended Bernstein-type inequality, while a closed-form expression is obtained for the outage constraints of MUEs. Then, we reformulate the nonconvex problem into a semidefinite program. Moreover, we propose a low-complexity algorithm to perform the joint optimization of the RRH activation and robust CoBF by using the group sparse beamforming method through the weighted &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\ell _{1}/\ell _{2} &lt;/tex-math&gt;&lt;/inline-formula&gt; norm reformulation, where the group sparsity patterns of beamformers are used to guide the RRHs that can be switched off. Simulation results demonstrate that the proposed algorithm can significantly reduce the network power consumption by 28% in the low signal-to-interference-plus noise ratio scenario. In addition, the algorithm can approach the system performance of the exhaustive search algorithm while having a much lower computational complexity.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2856831</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Antennas ; Array signal processing ; Beamforming ; Cloud computing ; Complexity ; Constraints ; coordinated beamforming ; group sparse ; Heterogeneous cloud radio access network ; massive MIMO ; MIMO (control systems) ; MIMO communication ; Optimization ; outage probability ; Power consumption ; Power demand ; Radio ; Resource management ; Robustness ; Search algorithms ; semidefinite relaxation ; Symmetric matrices ; Wireless communication systems ; Wireless communications</subject><ispartof>IEEE access, 2018-01, Vol.6, p.40506-40518</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-2613d8372c13d14636cf6c6363a41ed640bc56be42bedef06f6b8e6c7b15d98f3</citedby><cites>FETCH-LOGICAL-c408t-2613d8372c13d14636cf6c6363a41ed640bc56be42bedef06f6b8e6c7b15d98f3</cites><orcidid>0000-0003-3780-9455 ; 0000-0002-6055-5900 ; 0000-0002-0659-8758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8412494$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Tan, Weiqiang</creatorcontrib><creatorcontrib>Xu, Guixian</creatorcontrib><creatorcontrib>Yin, Changchuan</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Li, Chunguo</creatorcontrib><title>Joint RRH Activation and Robust Coordinated Beamforming for Massive MIMO Heterogeneous Cloud Radio Access Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>Heterogeneous cloud radio access networks (H-CRANs), proposed to boost both spectral and energy efficiency while reducing the signaling overhead, have been regarded as a promising paradigm for fifth-generation wireless communication systems. To reduce the network power consumption, in this paper, we propose a joint remote radio head (RRH) activation and outage constrained coordinated beamforming (CoBF) algorithm for massive multiple-input multiple-output H-CRANs. Considering the imperfect channel state information and power consumption of fronthaul links and individual transmission power limitations at the RRHs, the downlink network power minimization problem subject to the constraints of specified outage probabilities at each macro user equipment (MUE) and each RRH user equipment (RUE) is reformulated. For a given RRH activation set, we first derive a conservative convex approximation for the outage constraints of RUEs by using semidefinite relaxation and an extended Bernstein-type inequality, while a closed-form expression is obtained for the outage constraints of MUEs. Then, we reformulate the nonconvex problem into a semidefinite program. Moreover, we propose a low-complexity algorithm to perform the joint optimization of the RRH activation and robust CoBF by using the group sparse beamforming method through the weighted &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\ell _{1}/\ell _{2} &lt;/tex-math&gt;&lt;/inline-formula&gt; norm reformulation, where the group sparsity patterns of beamformers are used to guide the RRHs that can be switched off. Simulation results demonstrate that the proposed algorithm can significantly reduce the network power consumption by 28% in the low signal-to-interference-plus noise ratio scenario. In addition, the algorithm can approach the system performance of the exhaustive search algorithm while having a much lower computational complexity.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Cloud computing</subject><subject>Complexity</subject><subject>Constraints</subject><subject>coordinated beamforming</subject><subject>group sparse</subject><subject>Heterogeneous cloud radio access network</subject><subject>massive MIMO</subject><subject>MIMO (control systems)</subject><subject>MIMO communication</subject><subject>Optimization</subject><subject>outage probability</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Radio</subject><subject>Resource management</subject><subject>Robustness</subject><subject>Search algorithms</subject><subject>semidefinite relaxation</subject><subject>Symmetric matrices</subject><subject>Wireless communication systems</subject><subject>Wireless communications</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkd1qGzEQhUVpocHxE-RG0Gu7-lut9tJZktglbsBpr4VWmjVy7VUiaRP69pW7IWQYOGKY843gIHRFyZJS0nxfte3N4-OSEaqWTFVScfoJXTAqmwWvuPz84f0VzVM6kFKqjKr6AsUfwQ8Z73ZrvLLZv5jsw4DN4PAudGPKuA0hOj-YDA5fgzn1IZ78sMdF8dak5F8AbzfbB7yGDDHsYYAwJtwew1gYxvlQwBZSwj8hv4b4J12iL705Jpi_6Qz9vr351a4X9w93m3Z1v7CCqLxgknKneM1sUSokl7aXtgg3goKTgnS2kh0I1oGDnshedgqkrTtauUb1fIY2E9cFc9BP0Z9M_KuD8fr_IMS9NjF7ewQNBoQTNTBmjGA1aypDiJRdJTpiamcL69vEeorheYSU9SGMcSjf10xUsuzy0jPEpy0bQ0oR-verlOhzVnrKSp-z0m9ZFdfV5PIA8O5QgjLRCP4P4hqQBw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Zhang, Kai</creator><creator>Tan, Weiqiang</creator><creator>Xu, Guixian</creator><creator>Yin, Changchuan</creator><creator>Liu, Wen</creator><creator>Li, Chunguo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3780-9455</orcidid><orcidid>https://orcid.org/0000-0002-6055-5900</orcidid><orcidid>https://orcid.org/0000-0002-0659-8758</orcidid></search><sort><creationdate>20180101</creationdate><title>Joint RRH Activation and Robust Coordinated Beamforming for Massive MIMO Heterogeneous Cloud Radio Access Networks</title><author>Zhang, Kai ; Tan, Weiqiang ; Xu, Guixian ; Yin, Changchuan ; Liu, Wen ; Li, Chunguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-2613d8372c13d14636cf6c6363a41ed640bc56be42bedef06f6b8e6c7b15d98f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Cloud computing</topic><topic>Complexity</topic><topic>Constraints</topic><topic>coordinated beamforming</topic><topic>group sparse</topic><topic>Heterogeneous cloud radio access network</topic><topic>massive MIMO</topic><topic>MIMO (control systems)</topic><topic>MIMO communication</topic><topic>Optimization</topic><topic>outage probability</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Radio</topic><topic>Resource management</topic><topic>Robustness</topic><topic>Search algorithms</topic><topic>semidefinite relaxation</topic><topic>Symmetric matrices</topic><topic>Wireless communication systems</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Tan, Weiqiang</creatorcontrib><creatorcontrib>Xu, Guixian</creatorcontrib><creatorcontrib>Yin, Changchuan</creatorcontrib><creatorcontrib>Liu, Wen</creatorcontrib><creatorcontrib>Li, Chunguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kai</au><au>Tan, Weiqiang</au><au>Xu, Guixian</au><au>Yin, Changchuan</au><au>Liu, Wen</au><au>Li, Chunguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint RRH Activation and Robust Coordinated Beamforming for Massive MIMO Heterogeneous Cloud Radio Access Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>40506</spage><epage>40518</epage><pages>40506-40518</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Heterogeneous cloud radio access networks (H-CRANs), proposed to boost both spectral and energy efficiency while reducing the signaling overhead, have been regarded as a promising paradigm for fifth-generation wireless communication systems. To reduce the network power consumption, in this paper, we propose a joint remote radio head (RRH) activation and outage constrained coordinated beamforming (CoBF) algorithm for massive multiple-input multiple-output H-CRANs. Considering the imperfect channel state information and power consumption of fronthaul links and individual transmission power limitations at the RRHs, the downlink network power minimization problem subject to the constraints of specified outage probabilities at each macro user equipment (MUE) and each RRH user equipment (RUE) is reformulated. For a given RRH activation set, we first derive a conservative convex approximation for the outage constraints of RUEs by using semidefinite relaxation and an extended Bernstein-type inequality, while a closed-form expression is obtained for the outage constraints of MUEs. Then, we reformulate the nonconvex problem into a semidefinite program. Moreover, we propose a low-complexity algorithm to perform the joint optimization of the RRH activation and robust CoBF by using the group sparse beamforming method through the weighted &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\ell _{1}/\ell _{2} &lt;/tex-math&gt;&lt;/inline-formula&gt; norm reformulation, where the group sparsity patterns of beamformers are used to guide the RRHs that can be switched off. Simulation results demonstrate that the proposed algorithm can significantly reduce the network power consumption by 28% in the low signal-to-interference-plus noise ratio scenario. In addition, the algorithm can approach the system performance of the exhaustive search algorithm while having a much lower computational complexity.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2856831</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3780-9455</orcidid><orcidid>https://orcid.org/0000-0002-6055-5900</orcidid><orcidid>https://orcid.org/0000-0002-0659-8758</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.40506-40518
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2018_2856831
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Antennas
Array signal processing
Beamforming
Cloud computing
Complexity
Constraints
coordinated beamforming
group sparse
Heterogeneous cloud radio access network
massive MIMO
MIMO (control systems)
MIMO communication
Optimization
outage probability
Power consumption
Power demand
Radio
Resource management
Robustness
Search algorithms
semidefinite relaxation
Symmetric matrices
Wireless communication systems
Wireless communications
title Joint RRH Activation and Robust Coordinated Beamforming for Massive MIMO Heterogeneous Cloud Radio Access Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20RRH%20Activation%20and%20Robust%20Coordinated%20Beamforming%20for%20Massive%20MIMO%20Heterogeneous%20Cloud%20Radio%20Access%20Networks&rft.jtitle=IEEE%20access&rft.au=Zhang,%20Kai&rft.date=2018-01-01&rft.volume=6&rft.spage=40506&rft.epage=40518&rft.pages=40506-40518&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2856831&rft_dat=%3Cproquest_cross%3E2456066366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456066366&rft_id=info:pmid/&rft_ieee_id=8412494&rft_doaj_id=oai_doaj_org_article_eae4d47e22aa427295a0066b54b0a7dc&rfr_iscdi=true