Nonconvex Penalized Regularization for Robust Sparse Recovery in the Presence of S\alpha S Noise

Nonconvex penalties have recently received considerable attention in sparse recovery based on Gaussian assumptions. However, many sparse recovery problems occur in the presence of impulsive noises. This paper is concerned with the analysis and comparison of different sparsity-inducing penalties for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.25474-25485
Hauptverfasser: Li, Yunyi, Lin, Yun, Cheng, Xiefeng, Xiao, Zhuolei, Shu, Feng, Gui, Guan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25485
container_issue
container_start_page 25474
container_title IEEE access
container_volume 6
creator Li, Yunyi
Lin, Yun
Cheng, Xiefeng
Xiao, Zhuolei
Shu, Feng
Gui, Guan
description Nonconvex penalties have recently received considerable attention in sparse recovery based on Gaussian assumptions. However, many sparse recovery problems occur in the presence of impulsive noises. This paper is concerned with the analysis and comparison of different sparsity-inducing penalties for L_{1} -loss function-based robust sparse recovery. To solve these nonconvex and nonsmooth optimization problems, we use the alternating direction method of multipliers framework to split this difficult problem into tractable sub-problems in combination with corresponding iterative proximal operators. This paper employs different nonconvex penalties and compares the performances, advantages, and properties and provides guidance for the choice of the best regularizer for sparse recovery with different levels of impulsive noise. Experimental results indicate that convex lasso ( L_{1} -norm) penalty is more effective for the suppression of highly impulsive noise than nonconvex penalties, while the nonconvex penalties show the potential to improve the performance in low and medium level noise. Moreover, among these nonconvex penalties, L_{p} norm can often obtain better recovery performance.
doi_str_mv 10.1109/ACCESS.2018.2830771
format Article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2018_2830771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8351921</ieee_id><doaj_id>oai_doaj_org_article_bec3718bfa304b838f1e5e996b4936af</doaj_id><sourcerecordid>oai_doaj_org_article_bec3718bfa304b838f1e5e996b4936af</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-3ed07b567db9ed9a8c5d461aa7f3cecca0ba20a636f67fb7c5dd8665573892663</originalsourceid><addsrcrecordid>eNpNkNtKJDEQhptlFxT1CbzJC8yYdE1OlzJ4AnHF1ruFWElXNNLbGZJWVp_edkfEuqmiqv7v4muaQ8GXQnB7dLxen3TdsuXCLFsDXGvxo9lthbILkKB-fpt3moNan_hcZl5JvdvcX-Ux5PGF_rFrGnFIb9SzG3p4HrCkN5xSHlnMhd1k_1wn1m2wVJofQn6h8srSyKZHYteFKo2BWI6s-4PD5hFZx65yqrTf_Io4VDr47HvN3enJ7fp8cfn77GJ9fLkIAHJaAPVce6l07y31Fk2Q_UoJRB0hUAjIPbYcFaiodPR6PvdGKSk1GNsqBXvNxZbbZ3xym5L-Ynl1GZP7v8jlwWGZUhjIeQqghfERga-8ARMFSbJW-ZUFhXFmwZYVSq61UPziCe4-nLutc_fh3H06n1OH21Qioq-EASlsK-Ad-tF-rw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonconvex Penalized Regularization for Robust Sparse Recovery in the Presence of S\alpha S Noise</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Yunyi ; Lin, Yun ; Cheng, Xiefeng ; Xiao, Zhuolei ; Shu, Feng ; Gui, Guan</creator><creatorcontrib>Li, Yunyi ; Lin, Yun ; Cheng, Xiefeng ; Xiao, Zhuolei ; Shu, Feng ; Gui, Guan</creatorcontrib><description><![CDATA[Nonconvex penalties have recently received considerable attention in sparse recovery based on Gaussian assumptions. However, many sparse recovery problems occur in the presence of impulsive noises. This paper is concerned with the analysis and comparison of different sparsity-inducing penalties for <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula>-loss function-based robust sparse recovery. To solve these nonconvex and nonsmooth optimization problems, we use the alternating direction method of multipliers framework to split this difficult problem into tractable sub-problems in combination with corresponding iterative proximal operators. This paper employs different nonconvex penalties and compares the performances, advantages, and properties and provides guidance for the choice of the best regularizer for sparse recovery with different levels of impulsive noise. Experimental results indicate that convex lasso (<inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula>-norm) penalty is more effective for the suppression of highly impulsive noise than nonconvex penalties, while the nonconvex penalties show the potential to improve the performance in low and medium level noise. Moreover, among these nonconvex penalties, <inline-formula> <tex-math notation="LaTeX">L_{p} </tex-math></inline-formula> norm can often obtain better recovery performance.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2830771</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>IEEE</publisher><subject>alternating direction method of multipliers (ADMM) ; Convex functions ; Image restoration ; impulsive noise ; Iterative algorithms ; Noise measurement ; Nonconvex penalties ; Optimization ; robust sparse recovery ; Robustness ; Telecommunications</subject><ispartof>IEEE access, 2018-01, Vol.6, p.25474-25485</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-3ed07b567db9ed9a8c5d461aa7f3cecca0ba20a636f67fb7c5dd8665573892663</citedby><cites>FETCH-LOGICAL-c335t-3ed07b567db9ed9a8c5d461aa7f3cecca0ba20a636f67fb7c5dd8665573892663</cites><orcidid>0000-0003-1379-9301 ; 0000-0003-0073-1965 ; 0000-0003-3888-2881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8351921$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Yunyi</creatorcontrib><creatorcontrib>Lin, Yun</creatorcontrib><creatorcontrib>Cheng, Xiefeng</creatorcontrib><creatorcontrib>Xiao, Zhuolei</creatorcontrib><creatorcontrib>Shu, Feng</creatorcontrib><creatorcontrib>Gui, Guan</creatorcontrib><title>Nonconvex Penalized Regularization for Robust Sparse Recovery in the Presence of S\alpha S Noise</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Nonconvex penalties have recently received considerable attention in sparse recovery based on Gaussian assumptions. However, many sparse recovery problems occur in the presence of impulsive noises. This paper is concerned with the analysis and comparison of different sparsity-inducing penalties for <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula>-loss function-based robust sparse recovery. To solve these nonconvex and nonsmooth optimization problems, we use the alternating direction method of multipliers framework to split this difficult problem into tractable sub-problems in combination with corresponding iterative proximal operators. This paper employs different nonconvex penalties and compares the performances, advantages, and properties and provides guidance for the choice of the best regularizer for sparse recovery with different levels of impulsive noise. Experimental results indicate that convex lasso (<inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula>-norm) penalty is more effective for the suppression of highly impulsive noise than nonconvex penalties, while the nonconvex penalties show the potential to improve the performance in low and medium level noise. Moreover, among these nonconvex penalties, <inline-formula> <tex-math notation="LaTeX">L_{p} </tex-math></inline-formula> norm can often obtain better recovery performance.]]></description><subject>alternating direction method of multipliers (ADMM)</subject><subject>Convex functions</subject><subject>Image restoration</subject><subject>impulsive noise</subject><subject>Iterative algorithms</subject><subject>Noise measurement</subject><subject>Nonconvex penalties</subject><subject>Optimization</subject><subject>robust sparse recovery</subject><subject>Robustness</subject><subject>Telecommunications</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkNtKJDEQhptlFxT1CbzJC8yYdE1OlzJ4AnHF1ruFWElXNNLbGZJWVp_edkfEuqmiqv7v4muaQ8GXQnB7dLxen3TdsuXCLFsDXGvxo9lthbILkKB-fpt3moNan_hcZl5JvdvcX-Ux5PGF_rFrGnFIb9SzG3p4HrCkN5xSHlnMhd1k_1wn1m2wVJofQn6h8srSyKZHYteFKo2BWI6s-4PD5hFZx65yqrTf_Io4VDr47HvN3enJ7fp8cfn77GJ9fLkIAHJaAPVce6l07y31Fk2Q_UoJRB0hUAjIPbYcFaiodPR6PvdGKSk1GNsqBXvNxZbbZ3xym5L-Ynl1GZP7v8jlwWGZUhjIeQqghfERga-8ARMFSbJW-ZUFhXFmwZYVSq61UPziCe4-nLutc_fh3H06n1OH21Qioq-EASlsK-Ad-tF-rw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Li, Yunyi</creator><creator>Lin, Yun</creator><creator>Cheng, Xiefeng</creator><creator>Xiao, Zhuolei</creator><creator>Shu, Feng</creator><creator>Gui, Guan</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1379-9301</orcidid><orcidid>https://orcid.org/0000-0003-0073-1965</orcidid><orcidid>https://orcid.org/0000-0003-3888-2881</orcidid></search><sort><creationdate>20180101</creationdate><title>Nonconvex Penalized Regularization for Robust Sparse Recovery in the Presence of S\alpha S Noise</title><author>Li, Yunyi ; Lin, Yun ; Cheng, Xiefeng ; Xiao, Zhuolei ; Shu, Feng ; Gui, Guan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-3ed07b567db9ed9a8c5d461aa7f3cecca0ba20a636f67fb7c5dd8665573892663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>alternating direction method of multipliers (ADMM)</topic><topic>Convex functions</topic><topic>Image restoration</topic><topic>impulsive noise</topic><topic>Iterative algorithms</topic><topic>Noise measurement</topic><topic>Nonconvex penalties</topic><topic>Optimization</topic><topic>robust sparse recovery</topic><topic>Robustness</topic><topic>Telecommunications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yunyi</creatorcontrib><creatorcontrib>Lin, Yun</creatorcontrib><creatorcontrib>Cheng, Xiefeng</creatorcontrib><creatorcontrib>Xiao, Zhuolei</creatorcontrib><creatorcontrib>Shu, Feng</creatorcontrib><creatorcontrib>Gui, Guan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yunyi</au><au>Lin, Yun</au><au>Cheng, Xiefeng</au><au>Xiao, Zhuolei</au><au>Shu, Feng</au><au>Gui, Guan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonconvex Penalized Regularization for Robust Sparse Recovery in the Presence of S\alpha S Noise</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>25474</spage><epage>25485</epage><pages>25474-25485</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Nonconvex penalties have recently received considerable attention in sparse recovery based on Gaussian assumptions. However, many sparse recovery problems occur in the presence of impulsive noises. This paper is concerned with the analysis and comparison of different sparsity-inducing penalties for <inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula>-loss function-based robust sparse recovery. To solve these nonconvex and nonsmooth optimization problems, we use the alternating direction method of multipliers framework to split this difficult problem into tractable sub-problems in combination with corresponding iterative proximal operators. This paper employs different nonconvex penalties and compares the performances, advantages, and properties and provides guidance for the choice of the best regularizer for sparse recovery with different levels of impulsive noise. Experimental results indicate that convex lasso (<inline-formula> <tex-math notation="LaTeX">L_{1} </tex-math></inline-formula>-norm) penalty is more effective for the suppression of highly impulsive noise than nonconvex penalties, while the nonconvex penalties show the potential to improve the performance in low and medium level noise. Moreover, among these nonconvex penalties, <inline-formula> <tex-math notation="LaTeX">L_{p} </tex-math></inline-formula> norm can often obtain better recovery performance.]]></abstract><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2830771</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1379-9301</orcidid><orcidid>https://orcid.org/0000-0003-0073-1965</orcidid><orcidid>https://orcid.org/0000-0003-3888-2881</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.25474-25485
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2018_2830771
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects alternating direction method of multipliers (ADMM)
Convex functions
Image restoration
impulsive noise
Iterative algorithms
Noise measurement
Nonconvex penalties
Optimization
robust sparse recovery
Robustness
Telecommunications
title Nonconvex Penalized Regularization for Robust Sparse Recovery in the Presence of S\alpha S Noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A50%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonconvex%20Penalized%20Regularization%20for%20Robust%20Sparse%20Recovery%20in%20the%20Presence%20of%20S%5Calpha%20S%20Noise&rft.jtitle=IEEE%20access&rft.au=Li,%20Yunyi&rft.date=2018-01-01&rft.volume=6&rft.spage=25474&rft.epage=25485&rft.pages=25474-25485&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2830771&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_bec3718bfa304b838f1e5e996b4936af%3C/doaj_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8351921&rft_doaj_id=oai_doaj_org_article_bec3718bfa304b838f1e5e996b4936af&rfr_iscdi=true