Discovering the Trading Pattern of Financial Market Participants: Comparison of Two Co-Clustering Methods
Co-clustering is rapidly becoming a powerful data analysis technique in varied fields, such as gene expression analysis, data and web mining, and market baskets analysis. In this paper, two co-clustering methods based on smooth plaid model (SPM) and parallel factor decomposition with sparse latent f...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018-01, Vol.6, p.14431-14438 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14438 |
---|---|
container_issue | |
container_start_page | 14431 |
container_title | IEEE access |
container_volume | 6 |
creator | Shi, Guangwei Ren, Liying Miao, Zhongchen Gao, Jian Che, Yanzhe Lu, Jidong |
description | Co-clustering is rapidly becoming a powerful data analysis technique in varied fields, such as gene expression analysis, data and web mining, and market baskets analysis. In this paper, two co-clustering methods based on smooth plaid model (SPM) and parallel factor decomposition with sparse latent factors (SLF-PARAFAC) are respectively applied to synthetic data set and investors' transaction-level data set from the China Financial Futures Exchange. We present the comparison between two methodologies. Both SLF-PARAFAC and SPM are efficient, robust, and well suited for discovering trading ecosystems in modern financial markets. We recognize temporal pattern differences of various trader types. The results help to develop a thorough understanding of trading behaviors, and to detect patterns and irregularities. |
doi_str_mv | 10.1109/ACCESS.2018.2801263 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2018_2801263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8279395</ieee_id><doaj_id>oai_doaj_org_article_637591492c4241828df71b9beabe2fc6</doaj_id><sourcerecordid>2455885680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-83c20912ebed5eb1484c58b0ed005108b26522cf24d1180a5e95bd64797fd8243</originalsourceid><addsrcrecordid>eNpNUV1r4zAQNOUOWtr-gr4Y-uyctJJs6d6Cr1_Q0oOmz0KW1q1yiZWTlJb79-fEIXRfdpmdmV2YoriiZEYpUT_mbXvz8jIDQuUMJKFQs5PiDGitKiZY_e3LfFpcprQkY8kREs1Z4X_5ZMMHRj-8lfkdy0U0bjf_NjljHMrQl7d-MIP1ZlU-mfgH87iL2Vu_MUNOP8s2rDcm-hT25MVnGJGqXW1TnlyfML8Hly6K771ZJbw89PPi9fZm0d5Xj893D-38sbKcyFxJZoEoCtihE9hRLrkVsiPoCBGUyA5qAWB74I5SSYxAJTpX80Y1vZPA2XnxMPm6YJZ6E_3axH86GK_3QIhvev_-CnXNGqEoV2A5cCpBur6hnerQdAi9rUev68lrE8PfLaasl2Ebh_F9DVwIKUUtychiE8vGkFLE_niVEr2LSE8R6V1E-hDRqLqaVB4RjwoJjWJKsP8D4Ywr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455885680</pqid></control><display><type>article</type><title>Discovering the Trading Pattern of Financial Market Participants: Comparison of Two Co-Clustering Methods</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shi, Guangwei ; Ren, Liying ; Miao, Zhongchen ; Gao, Jian ; Che, Yanzhe ; Lu, Jidong</creator><creatorcontrib>Shi, Guangwei ; Ren, Liying ; Miao, Zhongchen ; Gao, Jian ; Che, Yanzhe ; Lu, Jidong</creatorcontrib><description>Co-clustering is rapidly becoming a powerful data analysis technique in varied fields, such as gene expression analysis, data and web mining, and market baskets analysis. In this paper, two co-clustering methods based on smooth plaid model (SPM) and parallel factor decomposition with sparse latent factors (SLF-PARAFAC) are respectively applied to synthetic data set and investors' transaction-level data set from the China Financial Futures Exchange. We present the comparison between two methodologies. Both SLF-PARAFAC and SPM are efficient, robust, and well suited for discovering trading ecosystems in modern financial markets. We recognize temporal pattern differences of various trader types. The results help to develop a thorough understanding of trading behaviors, and to detect patterns and irregularities.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2801263</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Baskets ; Clustering ; Co-clustering ; Data analysis ; Data mining ; Data models ; Datasets ; Ecosystems ; Gene expression ; Indexes ; machine learning ; Pattern recognition ; time-series ; trading behavior</subject><ispartof>IEEE access, 2018-01, Vol.6, p.14431-14438</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-83c20912ebed5eb1484c58b0ed005108b26522cf24d1180a5e95bd64797fd8243</citedby><cites>FETCH-LOGICAL-c408t-83c20912ebed5eb1484c58b0ed005108b26522cf24d1180a5e95bd64797fd8243</cites><orcidid>0000-0002-1791-4701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8279395$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Shi, Guangwei</creatorcontrib><creatorcontrib>Ren, Liying</creatorcontrib><creatorcontrib>Miao, Zhongchen</creatorcontrib><creatorcontrib>Gao, Jian</creatorcontrib><creatorcontrib>Che, Yanzhe</creatorcontrib><creatorcontrib>Lu, Jidong</creatorcontrib><title>Discovering the Trading Pattern of Financial Market Participants: Comparison of Two Co-Clustering Methods</title><title>IEEE access</title><addtitle>Access</addtitle><description>Co-clustering is rapidly becoming a powerful data analysis technique in varied fields, such as gene expression analysis, data and web mining, and market baskets analysis. In this paper, two co-clustering methods based on smooth plaid model (SPM) and parallel factor decomposition with sparse latent factors (SLF-PARAFAC) are respectively applied to synthetic data set and investors' transaction-level data set from the China Financial Futures Exchange. We present the comparison between two methodologies. Both SLF-PARAFAC and SPM are efficient, robust, and well suited for discovering trading ecosystems in modern financial markets. We recognize temporal pattern differences of various trader types. The results help to develop a thorough understanding of trading behaviors, and to detect patterns and irregularities.</description><subject>Analytical models</subject><subject>Baskets</subject><subject>Clustering</subject><subject>Co-clustering</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data models</subject><subject>Datasets</subject><subject>Ecosystems</subject><subject>Gene expression</subject><subject>Indexes</subject><subject>machine learning</subject><subject>Pattern recognition</subject><subject>time-series</subject><subject>trading behavior</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1r4zAQNOUOWtr-gr4Y-uyctJJs6d6Cr1_Q0oOmz0KW1q1yiZWTlJb79-fEIXRfdpmdmV2YoriiZEYpUT_mbXvz8jIDQuUMJKFQs5PiDGitKiZY_e3LfFpcprQkY8kREs1Z4X_5ZMMHRj-8lfkdy0U0bjf_NjljHMrQl7d-MIP1ZlU-mfgH87iL2Vu_MUNOP8s2rDcm-hT25MVnGJGqXW1TnlyfML8Hly6K771ZJbw89PPi9fZm0d5Xj893D-38sbKcyFxJZoEoCtihE9hRLrkVsiPoCBGUyA5qAWB74I5SSYxAJTpX80Y1vZPA2XnxMPm6YJZ6E_3axH86GK_3QIhvev_-CnXNGqEoV2A5cCpBur6hnerQdAi9rUev68lrE8PfLaasl2Ebh_F9DVwIKUUtychiE8vGkFLE_niVEr2LSE8R6V1E-hDRqLqaVB4RjwoJjWJKsP8D4Ywr</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Shi, Guangwei</creator><creator>Ren, Liying</creator><creator>Miao, Zhongchen</creator><creator>Gao, Jian</creator><creator>Che, Yanzhe</creator><creator>Lu, Jidong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1791-4701</orcidid></search><sort><creationdate>20180101</creationdate><title>Discovering the Trading Pattern of Financial Market Participants: Comparison of Two Co-Clustering Methods</title><author>Shi, Guangwei ; Ren, Liying ; Miao, Zhongchen ; Gao, Jian ; Che, Yanzhe ; Lu, Jidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-83c20912ebed5eb1484c58b0ed005108b26522cf24d1180a5e95bd64797fd8243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical models</topic><topic>Baskets</topic><topic>Clustering</topic><topic>Co-clustering</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data models</topic><topic>Datasets</topic><topic>Ecosystems</topic><topic>Gene expression</topic><topic>Indexes</topic><topic>machine learning</topic><topic>Pattern recognition</topic><topic>time-series</topic><topic>trading behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Guangwei</creatorcontrib><creatorcontrib>Ren, Liying</creatorcontrib><creatorcontrib>Miao, Zhongchen</creatorcontrib><creatorcontrib>Gao, Jian</creatorcontrib><creatorcontrib>Che, Yanzhe</creatorcontrib><creatorcontrib>Lu, Jidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Guangwei</au><au>Ren, Liying</au><au>Miao, Zhongchen</au><au>Gao, Jian</au><au>Che, Yanzhe</au><au>Lu, Jidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering the Trading Pattern of Financial Market Participants: Comparison of Two Co-Clustering Methods</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>14431</spage><epage>14438</epage><pages>14431-14438</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Co-clustering is rapidly becoming a powerful data analysis technique in varied fields, such as gene expression analysis, data and web mining, and market baskets analysis. In this paper, two co-clustering methods based on smooth plaid model (SPM) and parallel factor decomposition with sparse latent factors (SLF-PARAFAC) are respectively applied to synthetic data set and investors' transaction-level data set from the China Financial Futures Exchange. We present the comparison between two methodologies. Both SLF-PARAFAC and SPM are efficient, robust, and well suited for discovering trading ecosystems in modern financial markets. We recognize temporal pattern differences of various trader types. The results help to develop a thorough understanding of trading behaviors, and to detect patterns and irregularities.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2801263</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1791-4701</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.14431-14438 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2018_2801263 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Analytical models Baskets Clustering Co-clustering Data analysis Data mining Data models Datasets Ecosystems Gene expression Indexes machine learning Pattern recognition time-series trading behavior |
title | Discovering the Trading Pattern of Financial Market Participants: Comparison of Two Co-Clustering Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20the%20Trading%20Pattern%20of%20Financial%20Market%20Participants:%20Comparison%20of%20Two%20Co-Clustering%20Methods&rft.jtitle=IEEE%20access&rft.au=Shi,%20Guangwei&rft.date=2018-01-01&rft.volume=6&rft.spage=14431&rft.epage=14438&rft.pages=14431-14438&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2801263&rft_dat=%3Cproquest_cross%3E2455885680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455885680&rft_id=info:pmid/&rft_ieee_id=8279395&rft_doaj_id=oai_doaj_org_article_637591492c4241828df71b9beabe2fc6&rfr_iscdi=true |