Discovering the Trading Pattern of Financial Market Participants: Comparison of Two Co-Clustering Methods

Co-clustering is rapidly becoming a powerful data analysis technique in varied fields, such as gene expression analysis, data and web mining, and market baskets analysis. In this paper, two co-clustering methods based on smooth plaid model (SPM) and parallel factor decomposition with sparse latent f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.14431-14438
Hauptverfasser: Shi, Guangwei, Ren, Liying, Miao, Zhongchen, Gao, Jian, Che, Yanzhe, Lu, Jidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14438
container_issue
container_start_page 14431
container_title IEEE access
container_volume 6
creator Shi, Guangwei
Ren, Liying
Miao, Zhongchen
Gao, Jian
Che, Yanzhe
Lu, Jidong
description Co-clustering is rapidly becoming a powerful data analysis technique in varied fields, such as gene expression analysis, data and web mining, and market baskets analysis. In this paper, two co-clustering methods based on smooth plaid model (SPM) and parallel factor decomposition with sparse latent factors (SLF-PARAFAC) are respectively applied to synthetic data set and investors' transaction-level data set from the China Financial Futures Exchange. We present the comparison between two methodologies. Both SLF-PARAFAC and SPM are efficient, robust, and well suited for discovering trading ecosystems in modern financial markets. We recognize temporal pattern differences of various trader types. The results help to develop a thorough understanding of trading behaviors, and to detect patterns and irregularities.
doi_str_mv 10.1109/ACCESS.2018.2801263
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2018_2801263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8279395</ieee_id><doaj_id>oai_doaj_org_article_637591492c4241828df71b9beabe2fc6</doaj_id><sourcerecordid>2455885680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-83c20912ebed5eb1484c58b0ed005108b26522cf24d1180a5e95bd64797fd8243</originalsourceid><addsrcrecordid>eNpNUV1r4zAQNOUOWtr-gr4Y-uyctJJs6d6Cr1_Q0oOmz0KW1q1yiZWTlJb79-fEIXRfdpmdmV2YoriiZEYpUT_mbXvz8jIDQuUMJKFQs5PiDGitKiZY_e3LfFpcprQkY8kREs1Z4X_5ZMMHRj-8lfkdy0U0bjf_NjljHMrQl7d-MIP1ZlU-mfgH87iL2Vu_MUNOP8s2rDcm-hT25MVnGJGqXW1TnlyfML8Hly6K771ZJbw89PPi9fZm0d5Xj893D-38sbKcyFxJZoEoCtihE9hRLrkVsiPoCBGUyA5qAWB74I5SSYxAJTpX80Y1vZPA2XnxMPm6YJZ6E_3axH86GK_3QIhvev_-CnXNGqEoV2A5cCpBur6hnerQdAi9rUev68lrE8PfLaasl2Ebh_F9DVwIKUUtychiE8vGkFLE_niVEr2LSE8R6V1E-hDRqLqaVB4RjwoJjWJKsP8D4Ywr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455885680</pqid></control><display><type>article</type><title>Discovering the Trading Pattern of Financial Market Participants: Comparison of Two Co-Clustering Methods</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Shi, Guangwei ; Ren, Liying ; Miao, Zhongchen ; Gao, Jian ; Che, Yanzhe ; Lu, Jidong</creator><creatorcontrib>Shi, Guangwei ; Ren, Liying ; Miao, Zhongchen ; Gao, Jian ; Che, Yanzhe ; Lu, Jidong</creatorcontrib><description>Co-clustering is rapidly becoming a powerful data analysis technique in varied fields, such as gene expression analysis, data and web mining, and market baskets analysis. In this paper, two co-clustering methods based on smooth plaid model (SPM) and parallel factor decomposition with sparse latent factors (SLF-PARAFAC) are respectively applied to synthetic data set and investors' transaction-level data set from the China Financial Futures Exchange. We present the comparison between two methodologies. Both SLF-PARAFAC and SPM are efficient, robust, and well suited for discovering trading ecosystems in modern financial markets. We recognize temporal pattern differences of various trader types. The results help to develop a thorough understanding of trading behaviors, and to detect patterns and irregularities.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2801263</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Baskets ; Clustering ; Co-clustering ; Data analysis ; Data mining ; Data models ; Datasets ; Ecosystems ; Gene expression ; Indexes ; machine learning ; Pattern recognition ; time-series ; trading behavior</subject><ispartof>IEEE access, 2018-01, Vol.6, p.14431-14438</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-83c20912ebed5eb1484c58b0ed005108b26522cf24d1180a5e95bd64797fd8243</citedby><cites>FETCH-LOGICAL-c408t-83c20912ebed5eb1484c58b0ed005108b26522cf24d1180a5e95bd64797fd8243</cites><orcidid>0000-0002-1791-4701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8279395$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Shi, Guangwei</creatorcontrib><creatorcontrib>Ren, Liying</creatorcontrib><creatorcontrib>Miao, Zhongchen</creatorcontrib><creatorcontrib>Gao, Jian</creatorcontrib><creatorcontrib>Che, Yanzhe</creatorcontrib><creatorcontrib>Lu, Jidong</creatorcontrib><title>Discovering the Trading Pattern of Financial Market Participants: Comparison of Two Co-Clustering Methods</title><title>IEEE access</title><addtitle>Access</addtitle><description>Co-clustering is rapidly becoming a powerful data analysis technique in varied fields, such as gene expression analysis, data and web mining, and market baskets analysis. In this paper, two co-clustering methods based on smooth plaid model (SPM) and parallel factor decomposition with sparse latent factors (SLF-PARAFAC) are respectively applied to synthetic data set and investors' transaction-level data set from the China Financial Futures Exchange. We present the comparison between two methodologies. Both SLF-PARAFAC and SPM are efficient, robust, and well suited for discovering trading ecosystems in modern financial markets. We recognize temporal pattern differences of various trader types. The results help to develop a thorough understanding of trading behaviors, and to detect patterns and irregularities.</description><subject>Analytical models</subject><subject>Baskets</subject><subject>Clustering</subject><subject>Co-clustering</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Data models</subject><subject>Datasets</subject><subject>Ecosystems</subject><subject>Gene expression</subject><subject>Indexes</subject><subject>machine learning</subject><subject>Pattern recognition</subject><subject>time-series</subject><subject>trading behavior</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1r4zAQNOUOWtr-gr4Y-uyctJJs6d6Cr1_Q0oOmz0KW1q1yiZWTlJb79-fEIXRfdpmdmV2YoriiZEYpUT_mbXvz8jIDQuUMJKFQs5PiDGitKiZY_e3LfFpcprQkY8kREs1Z4X_5ZMMHRj-8lfkdy0U0bjf_NjljHMrQl7d-MIP1ZlU-mfgH87iL2Vu_MUNOP8s2rDcm-hT25MVnGJGqXW1TnlyfML8Hly6K771ZJbw89PPi9fZm0d5Xj893D-38sbKcyFxJZoEoCtihE9hRLrkVsiPoCBGUyA5qAWB74I5SSYxAJTpX80Y1vZPA2XnxMPm6YJZ6E_3axH86GK_3QIhvev_-CnXNGqEoV2A5cCpBur6hnerQdAi9rUev68lrE8PfLaasl2Ebh_F9DVwIKUUtychiE8vGkFLE_niVEr2LSE8R6V1E-hDRqLqaVB4RjwoJjWJKsP8D4Ywr</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Shi, Guangwei</creator><creator>Ren, Liying</creator><creator>Miao, Zhongchen</creator><creator>Gao, Jian</creator><creator>Che, Yanzhe</creator><creator>Lu, Jidong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1791-4701</orcidid></search><sort><creationdate>20180101</creationdate><title>Discovering the Trading Pattern of Financial Market Participants: Comparison of Two Co-Clustering Methods</title><author>Shi, Guangwei ; Ren, Liying ; Miao, Zhongchen ; Gao, Jian ; Che, Yanzhe ; Lu, Jidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-83c20912ebed5eb1484c58b0ed005108b26522cf24d1180a5e95bd64797fd8243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical models</topic><topic>Baskets</topic><topic>Clustering</topic><topic>Co-clustering</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Data models</topic><topic>Datasets</topic><topic>Ecosystems</topic><topic>Gene expression</topic><topic>Indexes</topic><topic>machine learning</topic><topic>Pattern recognition</topic><topic>time-series</topic><topic>trading behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Guangwei</creatorcontrib><creatorcontrib>Ren, Liying</creatorcontrib><creatorcontrib>Miao, Zhongchen</creatorcontrib><creatorcontrib>Gao, Jian</creatorcontrib><creatorcontrib>Che, Yanzhe</creatorcontrib><creatorcontrib>Lu, Jidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Guangwei</au><au>Ren, Liying</au><au>Miao, Zhongchen</au><au>Gao, Jian</au><au>Che, Yanzhe</au><au>Lu, Jidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering the Trading Pattern of Financial Market Participants: Comparison of Two Co-Clustering Methods</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>14431</spage><epage>14438</epage><pages>14431-14438</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Co-clustering is rapidly becoming a powerful data analysis technique in varied fields, such as gene expression analysis, data and web mining, and market baskets analysis. In this paper, two co-clustering methods based on smooth plaid model (SPM) and parallel factor decomposition with sparse latent factors (SLF-PARAFAC) are respectively applied to synthetic data set and investors' transaction-level data set from the China Financial Futures Exchange. We present the comparison between two methodologies. Both SLF-PARAFAC and SPM are efficient, robust, and well suited for discovering trading ecosystems in modern financial markets. We recognize temporal pattern differences of various trader types. The results help to develop a thorough understanding of trading behaviors, and to detect patterns and irregularities.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2801263</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1791-4701</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2018-01, Vol.6, p.14431-14438
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2018_2801263
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Analytical models
Baskets
Clustering
Co-clustering
Data analysis
Data mining
Data models
Datasets
Ecosystems
Gene expression
Indexes
machine learning
Pattern recognition
time-series
trading behavior
title Discovering the Trading Pattern of Financial Market Participants: Comparison of Two Co-Clustering Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A54%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20the%20Trading%20Pattern%20of%20Financial%20Market%20Participants:%20Comparison%20of%20Two%20Co-Clustering%20Methods&rft.jtitle=IEEE%20access&rft.au=Shi,%20Guangwei&rft.date=2018-01-01&rft.volume=6&rft.spage=14431&rft.epage=14438&rft.pages=14431-14438&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2801263&rft_dat=%3Cproquest_cross%3E2455885680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455885680&rft_id=info:pmid/&rft_ieee_id=8279395&rft_doaj_id=oai_doaj_org_article_637591492c4241828df71b9beabe2fc6&rfr_iscdi=true