Gantry Work Cell Scheduling through Reinforcement Learning with Knowledge-guided Reward Setting
In this paper, a manufacturing work cell utilizing gantries to move between machines for loading and unloading materials/parts is considered. The production performance of the gantry work cell highly depends on the gantry movements in real operation. This paper formulates the gantry scheduling probl...
Gespeichert in:
Veröffentlicht in: | IEEE access 2018-01, Vol.6, p.14699-14709 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14709 |
---|---|
container_issue | |
container_start_page | 14699 |
container_title | IEEE access |
container_volume | 6 |
creator | Ou, Xinyan Chang, Qing Arinez, Jorge Zou, Jing |
description | In this paper, a manufacturing work cell utilizing gantries to move between machines for loading and unloading materials/parts is considered. The production performance of the gantry work cell highly depends on the gantry movements in real operation. This paper formulates the gantry scheduling problem as a reinforcement learning problem, in which an optimal gantry moving policy is solved to maximize the system output. The problem is carried out by the Q-learning algorithm. The gantry system is analyzed and its real-time performance is evaluated by permanent production loss and production loss risk, which provide a theoretical base for defining reward function in the Q-learning algorithm. A numerical study is performed to demonstrate the effectiveness of the proposed policy by comparing with the first-come-first-served policy. |
doi_str_mv | 10.1109/ACCESS.2018.2800641 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2018_2800641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8283823</ieee_id><doaj_id>oai_doaj_org_article_e026a721918c4b9d9f116e8eb7804cea</doaj_id><sourcerecordid>2455907277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-55b1030241f18b7fea8bca2c4f7057593d44fd1fd05913d3ba882400847582f3</originalsourceid><addsrcrecordid>eNpNUU1LxDAQLaLgov6CvRQ8d81nkx6l-IULgit4DGky6XatjaYpi__erBVxLjPMvPdmhpdlS4xWGKPq6rqubzabFUFYrohEqGT4KFsQXFYF5bQ8_lefZhfjuEMpZGpxscjUnR5i-MpffXjLa-j7fGO2YKe-G9o8boOf2m3-DN3gfDDwDkPM16DDcBjvu7jNHwe_78G2ULRTZ8Em8F4Hm28gxgQ6z06c7ke4-M1n2cvtzUt9X6yf7h7q63VhGJKx4LzBiCLCsMOyEQ60bIwmhjmBuOAVtYw5i51FvMLU0kZLSVh6gwkuiaNn2cMsa73eqY_Qvevwpbzu1E_Dh1bpEDvTgwJESi0IrrA0rKls5TAuQUIjJGIGdNK6nLU-gv-cYIxq56cwpOsVYZxXSBAhEorOKBP8OAZwf1sxUgdf1OyLOviifn1JrOXM6gDgjyGJpJJQ-g3LEIit</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455907277</pqid></control><display><type>article</type><title>Gantry Work Cell Scheduling through Reinforcement Learning with Knowledge-guided Reward Setting</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ou, Xinyan ; Chang, Qing ; Arinez, Jorge ; Zou, Jing</creator><creatorcontrib>Ou, Xinyan ; Chang, Qing ; Arinez, Jorge ; Zou, Jing</creatorcontrib><description>In this paper, a manufacturing work cell utilizing gantries to move between machines for loading and unloading materials/parts is considered. The production performance of the gantry work cell highly depends on the gantry movements in real operation. This paper formulates the gantry scheduling problem as a reinforcement learning problem, in which an optimal gantry moving policy is solved to maximize the system output. The problem is carried out by the Q-learning algorithm. The gantry system is analyzed and its real-time performance is evaluated by permanent production loss and production loss risk, which provide a theoretical base for defining reward function in the Q-learning algorithm. A numerical study is performed to demonstrate the effectiveness of the proposed policy by comparing with the first-come-first-served policy.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2018.2800641</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Equivalent serial line ; Gantry cranes ; gantry scheduling ; Job shop scheduling ; Learning (artificial intelligence) ; Machine learning ; Performance evaluation ; production loss risk ; Q-learning ; Real-time systems ; reinforcement learning ; Scheduling ; Service robots</subject><ispartof>IEEE access, 2018-01, Vol.6, p.14699-14709</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-55b1030241f18b7fea8bca2c4f7057593d44fd1fd05913d3ba882400847582f3</citedby><cites>FETCH-LOGICAL-c408t-55b1030241f18b7fea8bca2c4f7057593d44fd1fd05913d3ba882400847582f3</cites><orcidid>0000-0003-3744-1371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8283823$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2104,27640,27931,27932,54940</link.rule.ids></links><search><creatorcontrib>Ou, Xinyan</creatorcontrib><creatorcontrib>Chang, Qing</creatorcontrib><creatorcontrib>Arinez, Jorge</creatorcontrib><creatorcontrib>Zou, Jing</creatorcontrib><title>Gantry Work Cell Scheduling through Reinforcement Learning with Knowledge-guided Reward Setting</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, a manufacturing work cell utilizing gantries to move between machines for loading and unloading materials/parts is considered. The production performance of the gantry work cell highly depends on the gantry movements in real operation. This paper formulates the gantry scheduling problem as a reinforcement learning problem, in which an optimal gantry moving policy is solved to maximize the system output. The problem is carried out by the Q-learning algorithm. The gantry system is analyzed and its real-time performance is evaluated by permanent production loss and production loss risk, which provide a theoretical base for defining reward function in the Q-learning algorithm. A numerical study is performed to demonstrate the effectiveness of the proposed policy by comparing with the first-come-first-served policy.</description><subject>Algorithms</subject><subject>Equivalent serial line</subject><subject>Gantry cranes</subject><subject>gantry scheduling</subject><subject>Job shop scheduling</subject><subject>Learning (artificial intelligence)</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>production loss risk</subject><subject>Q-learning</subject><subject>Real-time systems</subject><subject>reinforcement learning</subject><subject>Scheduling</subject><subject>Service robots</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LxDAQLaLgov6CvRQ8d81nkx6l-IULgit4DGky6XatjaYpi__erBVxLjPMvPdmhpdlS4xWGKPq6rqubzabFUFYrohEqGT4KFsQXFYF5bQ8_lefZhfjuEMpZGpxscjUnR5i-MpffXjLa-j7fGO2YKe-G9o8boOf2m3-DN3gfDDwDkPM16DDcBjvu7jNHwe_78G2ULRTZ8Em8F4Hm28gxgQ6z06c7ke4-M1n2cvtzUt9X6yf7h7q63VhGJKx4LzBiCLCsMOyEQ60bIwmhjmBuOAVtYw5i51FvMLU0kZLSVh6gwkuiaNn2cMsa73eqY_Qvevwpbzu1E_Dh1bpEDvTgwJESi0IrrA0rKls5TAuQUIjJGIGdNK6nLU-gv-cYIxq56cwpOsVYZxXSBAhEorOKBP8OAZwf1sxUgdf1OyLOviifn1JrOXM6gDgjyGJpJJQ-g3LEIit</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Ou, Xinyan</creator><creator>Chang, Qing</creator><creator>Arinez, Jorge</creator><creator>Zou, Jing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3744-1371</orcidid></search><sort><creationdate>20180101</creationdate><title>Gantry Work Cell Scheduling through Reinforcement Learning with Knowledge-guided Reward Setting</title><author>Ou, Xinyan ; Chang, Qing ; Arinez, Jorge ; Zou, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-55b1030241f18b7fea8bca2c4f7057593d44fd1fd05913d3ba882400847582f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Equivalent serial line</topic><topic>Gantry cranes</topic><topic>gantry scheduling</topic><topic>Job shop scheduling</topic><topic>Learning (artificial intelligence)</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>production loss risk</topic><topic>Q-learning</topic><topic>Real-time systems</topic><topic>reinforcement learning</topic><topic>Scheduling</topic><topic>Service robots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ou, Xinyan</creatorcontrib><creatorcontrib>Chang, Qing</creatorcontrib><creatorcontrib>Arinez, Jorge</creatorcontrib><creatorcontrib>Zou, Jing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ou, Xinyan</au><au>Chang, Qing</au><au>Arinez, Jorge</au><au>Zou, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gantry Work Cell Scheduling through Reinforcement Learning with Knowledge-guided Reward Setting</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><spage>14699</spage><epage>14709</epage><pages>14699-14709</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, a manufacturing work cell utilizing gantries to move between machines for loading and unloading materials/parts is considered. The production performance of the gantry work cell highly depends on the gantry movements in real operation. This paper formulates the gantry scheduling problem as a reinforcement learning problem, in which an optimal gantry moving policy is solved to maximize the system output. The problem is carried out by the Q-learning algorithm. The gantry system is analyzed and its real-time performance is evaluated by permanent production loss and production loss risk, which provide a theoretical base for defining reward function in the Q-learning algorithm. A numerical study is performed to demonstrate the effectiveness of the proposed policy by comparing with the first-come-first-served policy.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2018.2800641</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3744-1371</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2018-01, Vol.6, p.14699-14709 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2018_2800641 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Equivalent serial line Gantry cranes gantry scheduling Job shop scheduling Learning (artificial intelligence) Machine learning Performance evaluation production loss risk Q-learning Real-time systems reinforcement learning Scheduling Service robots |
title | Gantry Work Cell Scheduling through Reinforcement Learning with Knowledge-guided Reward Setting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A59%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gantry%20Work%20Cell%20Scheduling%20through%20Reinforcement%20Learning%20with%20Knowledge-guided%20Reward%20Setting&rft.jtitle=IEEE%20access&rft.au=Ou,%20Xinyan&rft.date=2018-01-01&rft.volume=6&rft.spage=14699&rft.epage=14709&rft.pages=14699-14709&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2018.2800641&rft_dat=%3Cproquest_cross%3E2455907277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455907277&rft_id=info:pmid/&rft_ieee_id=8283823&rft_doaj_id=oai_doaj_org_article_e026a721918c4b9d9f116e8eb7804cea&rfr_iscdi=true |