A Digital Twin-Based Approach for Designing and Multi-Objective Optimization of Hollow Glass Production Line

Various new national advanced manufacturing strategies, such as Industry 4.0, Industrial Internet, and Made in China 2025, are issued to achieve smart manufacturing, resulting in the increasing number of newly designed production lines in both developed and developing countries. Under the individual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2017-01, Vol.5, p.26901-26911
Hauptverfasser: Zhang, Hao, Liu, Qiang, Chen, Xin, Zhang, Ding, Leng, Jiewu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Various new national advanced manufacturing strategies, such as Industry 4.0, Industrial Internet, and Made in China 2025, are issued to achieve smart manufacturing, resulting in the increasing number of newly designed production lines in both developed and developing countries. Under the individualized designing demands, more realistic virtual models mirroring the real worlds of production lines are essential to bridge the gap between design and operation. This paper presents a digital twin-based approach for rapid individualized designing of the hollow glass production line. The digital twin merges physics-based system modeling and distributed real-time process data to generate an authoritative digital design of the system at pre-production phase. A digital twin-based analytical decoupling framework is also developed to provide engineering analysis capabilities and support the decision-making over the system designing and solution evaluation. Three key enabling techniques as well as a case study in hollow glass production line are addressed to validate the proposed approach.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2017.2766453