Quadrature Compressive Sampling for Multiband Radar Echo Signals

In multiband/multifunction radars, the received echoes are usually multiband signals consisting of several subbands with different carrier frequencies. Digital acquisition of the in-phase and quadrature (I and Q) components of each subband is important for the extraction of radar targets. However, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2017-01, Vol.5, p.19742-19760
Hauptverfasser: Chen, Shengyao, Xi, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19760
container_issue
container_start_page 19742
container_title IEEE access
container_volume 5
creator Chen, Shengyao
Xi, Feng
description In multiband/multifunction radars, the received echoes are usually multiband signals consisting of several subbands with different carrier frequencies. Digital acquisition of the in-phase and quadrature (I and Q) components of each subband is important for the extraction of radar targets. However, the existing acquisition methods are inefficient because their sampling rates are at least twice of the effective bandwidth, also known as the Landau rate. In this paper, we merge the quadrature compressive sampling into the uniform sampling technique for multiband signals, and develop a multiband quadrature compressive sampling (MQuadCS) system. The MQuadCS system first applies the random modulation to generate a compressive multiband signal, and then utilizes the uniform sampling to output the samples of the compressive multiband signal at its Landau rate. As the Landau rate of the compressive multiband signal is much less than that of the received echo, the MQuadCS achieves the sub-Landau rate sampling. With the assumption of sparse targets, the I and Q components of each subband can be independently recovered by the corresponding samples separated from the compressive multiband samples. For the independent recovery, we establish the model of MQuadCS system parameters and provide a sufficient condition to ensure the existence of the system parameters. To guarantee successful recovery of each subband, we introduce the frequency domain representation of the MQuadCS and then derive the reconstructability condition via restricted isometry property analysis. Furthermore, we design a system parameter optimization scheme to improve the recovery performance. Theoretical analyses and simulations validate the efficiency of the MQuadCS system.
doi_str_mv 10.1109/ACCESS.2017.2753826
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2017_2753826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8039495</ieee_id><doaj_id>oai_doaj_org_article_e189210e848249d2adff6aabd20d16c6</doaj_id><sourcerecordid>2455944995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1362ef1f8579daaea8e433ec4f6a7ef2c5da7133719e41c9c51130464701ed2f3</originalsourceid><addsrcrecordid>eNpNUE1Lw0AQDaKgqL_AS8Bz685-JLs3JVQtVESr52Xcna0pbbduEsF_b2pKcS5vGN4H87LsCtgYgJmbu6qazOdjzqAc81IJzYuj7IxDYUZCieL4336aXTbNkvWj-5Mqz7Lblw59wrZLlFdxvU3UNPU35XNcb1f1ZpGHmPKnbtXWH7jx-St6TPnEfcZ8Xi82uGouspPQA13u8Tx7v5-8VY-j2fPDtLqbjZxkuh2BKDgFCFqVxiMSapJCkJOhwJICd8pjCUKUYEiCM04BCCYLWTIgz4M4z6aDr4-4tNtUrzH92Ii1_TvEtLCY2tqtyBJow4GRlppL4zn60Kfgh-fMQ-GK3ut68Nqm-NVR09pl7NLuG8ulUkZKY1TPEgPLpdg0icIhFZjdNW-H5u2uebtvvlddDaqaiA4KzYSRvecv-vR-HQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455944995</pqid></control><display><type>article</type><title>Quadrature Compressive Sampling for Multiband Radar Echo Signals</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, Shengyao ; Xi, Feng</creator><creatorcontrib>Chen, Shengyao ; Xi, Feng</creatorcontrib><description>In multiband/multifunction radars, the received echoes are usually multiband signals consisting of several subbands with different carrier frequencies. Digital acquisition of the in-phase and quadrature (I and Q) components of each subband is important for the extraction of radar targets. However, the existing acquisition methods are inefficient because their sampling rates are at least twice of the effective bandwidth, also known as the Landau rate. In this paper, we merge the quadrature compressive sampling into the uniform sampling technique for multiband signals, and develop a multiband quadrature compressive sampling (MQuadCS) system. The MQuadCS system first applies the random modulation to generate a compressive multiband signal, and then utilizes the uniform sampling to output the samples of the compressive multiband signal at its Landau rate. As the Landau rate of the compressive multiband signal is much less than that of the received echo, the MQuadCS achieves the sub-Landau rate sampling. With the assumption of sparse targets, the I and Q components of each subband can be independently recovered by the corresponding samples separated from the compressive multiband samples. For the independent recovery, we establish the model of MQuadCS system parameters and provide a sufficient condition to ensure the existence of the system parameters. To guarantee successful recovery of each subband, we introduce the frequency domain representation of the MQuadCS and then derive the reconstructability condition via restricted isometry property analysis. Furthermore, we design a system parameter optimization scheme to improve the recovery performance. Theoretical analyses and simulations validate the efficiency of the MQuadCS system.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2753826</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>analog-to-information conversion ; Bandwidth ; Carrier frequencies ; compressed sampling ; Demodulation ; Design optimization ; Design parameters ; Dictionaries ; Frequency-domain analysis ; Multiband signal ; Optimization ; quadrature sampling ; Quadratures ; Radar ; Radar echoes ; Radar targets ; Recovery ; Sampling methods ; Sufficient conditions</subject><ispartof>IEEE access, 2017-01, Vol.5, p.19742-19760</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1362ef1f8579daaea8e433ec4f6a7ef2c5da7133719e41c9c51130464701ed2f3</citedby><cites>FETCH-LOGICAL-c408t-1362ef1f8579daaea8e433ec4f6a7ef2c5da7133719e41c9c51130464701ed2f3</cites><orcidid>0000-0002-4546-5843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8039495$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Chen, Shengyao</creatorcontrib><creatorcontrib>Xi, Feng</creatorcontrib><title>Quadrature Compressive Sampling for Multiband Radar Echo Signals</title><title>IEEE access</title><addtitle>Access</addtitle><description>In multiband/multifunction radars, the received echoes are usually multiband signals consisting of several subbands with different carrier frequencies. Digital acquisition of the in-phase and quadrature (I and Q) components of each subband is important for the extraction of radar targets. However, the existing acquisition methods are inefficient because their sampling rates are at least twice of the effective bandwidth, also known as the Landau rate. In this paper, we merge the quadrature compressive sampling into the uniform sampling technique for multiband signals, and develop a multiband quadrature compressive sampling (MQuadCS) system. The MQuadCS system first applies the random modulation to generate a compressive multiband signal, and then utilizes the uniform sampling to output the samples of the compressive multiband signal at its Landau rate. As the Landau rate of the compressive multiband signal is much less than that of the received echo, the MQuadCS achieves the sub-Landau rate sampling. With the assumption of sparse targets, the I and Q components of each subband can be independently recovered by the corresponding samples separated from the compressive multiband samples. For the independent recovery, we establish the model of MQuadCS system parameters and provide a sufficient condition to ensure the existence of the system parameters. To guarantee successful recovery of each subband, we introduce the frequency domain representation of the MQuadCS and then derive the reconstructability condition via restricted isometry property analysis. Furthermore, we design a system parameter optimization scheme to improve the recovery performance. Theoretical analyses and simulations validate the efficiency of the MQuadCS system.</description><subject>analog-to-information conversion</subject><subject>Bandwidth</subject><subject>Carrier frequencies</subject><subject>compressed sampling</subject><subject>Demodulation</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Dictionaries</subject><subject>Frequency-domain analysis</subject><subject>Multiband signal</subject><subject>Optimization</subject><subject>quadrature sampling</subject><subject>Quadratures</subject><subject>Radar</subject><subject>Radar echoes</subject><subject>Radar targets</subject><subject>Recovery</subject><subject>Sampling methods</subject><subject>Sufficient conditions</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1Lw0AQDaKgqL_AS8Bz685-JLs3JVQtVESr52Xcna0pbbduEsF_b2pKcS5vGN4H87LsCtgYgJmbu6qazOdjzqAc81IJzYuj7IxDYUZCieL4336aXTbNkvWj-5Mqz7Lblw59wrZLlFdxvU3UNPU35XNcb1f1ZpGHmPKnbtXWH7jx-St6TPnEfcZ8Xi82uGouspPQA13u8Tx7v5-8VY-j2fPDtLqbjZxkuh2BKDgFCFqVxiMSapJCkJOhwJICd8pjCUKUYEiCM04BCCYLWTIgz4M4z6aDr4-4tNtUrzH92Ii1_TvEtLCY2tqtyBJow4GRlppL4zn60Kfgh-fMQ-GK3ut68Nqm-NVR09pl7NLuG8ulUkZKY1TPEgPLpdg0icIhFZjdNW-H5u2uebtvvlddDaqaiA4KzYSRvecv-vR-HQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Chen, Shengyao</creator><creator>Xi, Feng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4546-5843</orcidid></search><sort><creationdate>20170101</creationdate><title>Quadrature Compressive Sampling for Multiband Radar Echo Signals</title><author>Chen, Shengyao ; Xi, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1362ef1f8579daaea8e433ec4f6a7ef2c5da7133719e41c9c51130464701ed2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>analog-to-information conversion</topic><topic>Bandwidth</topic><topic>Carrier frequencies</topic><topic>compressed sampling</topic><topic>Demodulation</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Dictionaries</topic><topic>Frequency-domain analysis</topic><topic>Multiband signal</topic><topic>Optimization</topic><topic>quadrature sampling</topic><topic>Quadratures</topic><topic>Radar</topic><topic>Radar echoes</topic><topic>Radar targets</topic><topic>Recovery</topic><topic>Sampling methods</topic><topic>Sufficient conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shengyao</creatorcontrib><creatorcontrib>Xi, Feng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shengyao</au><au>Xi, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadrature Compressive Sampling for Multiband Radar Echo Signals</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>5</volume><spage>19742</spage><epage>19760</epage><pages>19742-19760</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In multiband/multifunction radars, the received echoes are usually multiband signals consisting of several subbands with different carrier frequencies. Digital acquisition of the in-phase and quadrature (I and Q) components of each subband is important for the extraction of radar targets. However, the existing acquisition methods are inefficient because their sampling rates are at least twice of the effective bandwidth, also known as the Landau rate. In this paper, we merge the quadrature compressive sampling into the uniform sampling technique for multiband signals, and develop a multiband quadrature compressive sampling (MQuadCS) system. The MQuadCS system first applies the random modulation to generate a compressive multiband signal, and then utilizes the uniform sampling to output the samples of the compressive multiband signal at its Landau rate. As the Landau rate of the compressive multiband signal is much less than that of the received echo, the MQuadCS achieves the sub-Landau rate sampling. With the assumption of sparse targets, the I and Q components of each subband can be independently recovered by the corresponding samples separated from the compressive multiband samples. For the independent recovery, we establish the model of MQuadCS system parameters and provide a sufficient condition to ensure the existence of the system parameters. To guarantee successful recovery of each subband, we introduce the frequency domain representation of the MQuadCS and then derive the reconstructability condition via restricted isometry property analysis. Furthermore, we design a system parameter optimization scheme to improve the recovery performance. Theoretical analyses and simulations validate the efficiency of the MQuadCS system.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2753826</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4546-5843</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2017-01, Vol.5, p.19742-19760
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2017_2753826
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects analog-to-information conversion
Bandwidth
Carrier frequencies
compressed sampling
Demodulation
Design optimization
Design parameters
Dictionaries
Frequency-domain analysis
Multiband signal
Optimization
quadrature sampling
Quadratures
Radar
Radar echoes
Radar targets
Recovery
Sampling methods
Sufficient conditions
title Quadrature Compressive Sampling for Multiband Radar Echo Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadrature%20Compressive%20Sampling%20for%20Multiband%20Radar%20Echo%20Signals&rft.jtitle=IEEE%20access&rft.au=Chen,%20Shengyao&rft.date=2017-01-01&rft.volume=5&rft.spage=19742&rft.epage=19760&rft.pages=19742-19760&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2753826&rft_dat=%3Cproquest_cross%3E2455944995%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455944995&rft_id=info:pmid/&rft_ieee_id=8039495&rft_doaj_id=oai_doaj_org_article_e189210e848249d2adff6aabd20d16c6&rfr_iscdi=true