Optimizing Lifespan and Energy Consumption by Smart Meters in Green-Cloud-Based Smart Grids

Green clouds optimally use energy resources in large-scale distributed computing environments. Large scale industries such as smart grids are adopting green cloud paradigm to optimize energy needs and to maximize lifespan of smart devices such as smart meters. Both, energy consumption and lifespan o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2017-01, Vol.5, p.20934-20945
Hauptverfasser: Siddiqui, Isma Farah, Lee, Scott Uk-Jin, Abbas, Asad, Bashir, Ali Kashif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20945
container_issue
container_start_page 20934
container_title IEEE access
container_volume 5
creator Siddiqui, Isma Farah
Lee, Scott Uk-Jin
Abbas, Asad
Bashir, Ali Kashif
description Green clouds optimally use energy resources in large-scale distributed computing environments. Large scale industries such as smart grids are adopting green cloud paradigm to optimize energy needs and to maximize lifespan of smart devices such as smart meters. Both, energy consumption and lifespan of smart meters are critical factors in smart grid applications where performance of these factors decreases with each cycle of grid operation such as record reading and dispatching to the edge nodes. Also, considering large-scale infrastructure of smart grid, replacing out-of-energy and faulty meters is not an economical solution. Therefore, to optimize the energy consumption and lifespan of smart meters, we present a knowledge-based usage strategy for smart meters in this paper. Our proposed scheme is novel and generates custom graph of smart meter tuple datasets and fetches the frequency of lifespan and energy consumption factors. Due to very large-scale dataset graphs, the said factors are fine-grained through R3F filter over modified Hungarian algorithm for smart grid repository. After receiving the exact status of usage, the grid places smart meters in logical partitions according to their utilization frequency. The experimental evaluation shows that the proposed approach enhances lifespan frequency of 100 smart meters by 72% and optimizes energy consumption at an overall percentile of 21% in the green cloud-based smart grid.
doi_str_mv 10.1109/ACCESS.2017.2752242
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2017_2752242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8046004</ieee_id><doaj_id>oai_doaj_org_article_04755b6fa160473ba49226d16e9e10f5</doaj_id><sourcerecordid>2455940806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-c2a93c8afa23e457bf62ebc999cb21c4f8d8eb6f7e638d70fcb88593412bd8293</originalsourceid><addsrcrecordid>eNpNUU1rGzEUXEILCWl-QS6CnNfV90rHZHGdgEsOTk49CK30ZGTslSutD-6vr9I1oe_yHsPMvIFpmnuCF4Rg_f2x75ebzYJi0i1oJyjl9Kq5oUTqlgkmv_x3Xzd3pexwHVUh0d00v16PUzzEP3HconUMUI52RHb0aDlC3p5Rn8ZyOlROGtFwRpuDzRP6CRPkguKIVhlgbPt9Ovn2yRbwF8YqR1--NV-D3Re4u-zb5v3H8q1_btevq5f-cd063vGpddRq5pQNljLgohuCpDA4rbUbKHE8KK9gkKEDyZTvcHCDUkIzTujgFdXstnmZfX2yO3PMsUY4m2Sj-QekvDU1U3R7MJh3QlQvS2Q92WC5plR6IkEDwUFUr4fZ65jT7xOUyezSKY81vqFcCM2xwrKy2MxyOZWSIXx-Jdh8lGLmUsxHKeZSSlXdz6oIAJ8KhbnEmLO_uSWHVw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455940806</pqid></control><display><type>article</type><title>Optimizing Lifespan and Energy Consumption by Smart Meters in Green-Cloud-Based Smart Grids</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IEEE Xplore Open Access Journals</source><creator>Siddiqui, Isma Farah ; Lee, Scott Uk-Jin ; Abbas, Asad ; Bashir, Ali Kashif</creator><creatorcontrib>Siddiqui, Isma Farah ; Lee, Scott Uk-Jin ; Abbas, Asad ; Bashir, Ali Kashif</creatorcontrib><description>Green clouds optimally use energy resources in large-scale distributed computing environments. Large scale industries such as smart grids are adopting green cloud paradigm to optimize energy needs and to maximize lifespan of smart devices such as smart meters. Both, energy consumption and lifespan of smart meters are critical factors in smart grid applications where performance of these factors decreases with each cycle of grid operation such as record reading and dispatching to the edge nodes. Also, considering large-scale infrastructure of smart grid, replacing out-of-energy and faulty meters is not an economical solution. Therefore, to optimize the energy consumption and lifespan of smart meters, we present a knowledge-based usage strategy for smart meters in this paper. Our proposed scheme is novel and generates custom graph of smart meter tuple datasets and fetches the frequency of lifespan and energy consumption factors. Due to very large-scale dataset graphs, the said factors are fine-grained through R3F filter over modified Hungarian algorithm for smart grid repository. After receiving the exact status of usage, the grid places smart meters in logical partitions according to their utilization frequency. The experimental evaluation shows that the proposed approach enhances lifespan frequency of 100 smart meters by 72% and optimizes energy consumption at an overall percentile of 21% in the green cloud-based smart grid.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2017.2752242</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Clean energy ; Cloud computing ; Clouds ; Computer networks ; Datasets ; Distributed processing ; Electronic devices ; Energy consumption ; Energy sources ; Fog Computing ; Green Cloud ; Green products ; IoT-enabled Smart Meter ; Life span ; Optimization ; Reservoirs ; Resource description framework ; Semantic Web ; Smart Grid ; Smart grids ; Smart meters</subject><ispartof>IEEE access, 2017-01, Vol.5, p.20934-20945</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-c2a93c8afa23e457bf62ebc999cb21c4f8d8eb6f7e638d70fcb88593412bd8293</citedby><cites>FETCH-LOGICAL-c474t-c2a93c8afa23e457bf62ebc999cb21c4f8d8eb6f7e638d70fcb88593412bd8293</cites><orcidid>0000-0002-8457-3097 ; 0000-0001-7491-8023 ; 0000-0003-2601-9327 ; 0000-0002-2058-4336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8046004$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Siddiqui, Isma Farah</creatorcontrib><creatorcontrib>Lee, Scott Uk-Jin</creatorcontrib><creatorcontrib>Abbas, Asad</creatorcontrib><creatorcontrib>Bashir, Ali Kashif</creatorcontrib><title>Optimizing Lifespan and Energy Consumption by Smart Meters in Green-Cloud-Based Smart Grids</title><title>IEEE access</title><addtitle>Access</addtitle><description>Green clouds optimally use energy resources in large-scale distributed computing environments. Large scale industries such as smart grids are adopting green cloud paradigm to optimize energy needs and to maximize lifespan of smart devices such as smart meters. Both, energy consumption and lifespan of smart meters are critical factors in smart grid applications where performance of these factors decreases with each cycle of grid operation such as record reading and dispatching to the edge nodes. Also, considering large-scale infrastructure of smart grid, replacing out-of-energy and faulty meters is not an economical solution. Therefore, to optimize the energy consumption and lifespan of smart meters, we present a knowledge-based usage strategy for smart meters in this paper. Our proposed scheme is novel and generates custom graph of smart meter tuple datasets and fetches the frequency of lifespan and energy consumption factors. Due to very large-scale dataset graphs, the said factors are fine-grained through R3F filter over modified Hungarian algorithm for smart grid repository. After receiving the exact status of usage, the grid places smart meters in logical partitions according to their utilization frequency. The experimental evaluation shows that the proposed approach enhances lifespan frequency of 100 smart meters by 72% and optimizes energy consumption at an overall percentile of 21% in the green cloud-based smart grid.</description><subject>Algorithms</subject><subject>Clean energy</subject><subject>Cloud computing</subject><subject>Clouds</subject><subject>Computer networks</subject><subject>Datasets</subject><subject>Distributed processing</subject><subject>Electronic devices</subject><subject>Energy consumption</subject><subject>Energy sources</subject><subject>Fog Computing</subject><subject>Green Cloud</subject><subject>Green products</subject><subject>IoT-enabled Smart Meter</subject><subject>Life span</subject><subject>Optimization</subject><subject>Reservoirs</subject><subject>Resource description framework</subject><subject>Semantic Web</subject><subject>Smart Grid</subject><subject>Smart grids</subject><subject>Smart meters</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEUXEILCWl-QS6CnNfV90rHZHGdgEsOTk49CK30ZGTslSutD-6vr9I1oe_yHsPMvIFpmnuCF4Rg_f2x75ebzYJi0i1oJyjl9Kq5oUTqlgkmv_x3Xzd3pexwHVUh0d00v16PUzzEP3HconUMUI52RHb0aDlC3p5Rn8ZyOlROGtFwRpuDzRP6CRPkguKIVhlgbPt9Ovn2yRbwF8YqR1--NV-D3Re4u-zb5v3H8q1_btevq5f-cd063vGpddRq5pQNljLgohuCpDA4rbUbKHE8KK9gkKEDyZTvcHCDUkIzTujgFdXstnmZfX2yO3PMsUY4m2Sj-QekvDU1U3R7MJh3QlQvS2Q92WC5plR6IkEDwUFUr4fZ65jT7xOUyezSKY81vqFcCM2xwrKy2MxyOZWSIXx-Jdh8lGLmUsxHKeZSSlXdz6oIAJ8KhbnEmLO_uSWHVw</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Siddiqui, Isma Farah</creator><creator>Lee, Scott Uk-Jin</creator><creator>Abbas, Asad</creator><creator>Bashir, Ali Kashif</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8457-3097</orcidid><orcidid>https://orcid.org/0000-0001-7491-8023</orcidid><orcidid>https://orcid.org/0000-0003-2601-9327</orcidid><orcidid>https://orcid.org/0000-0002-2058-4336</orcidid></search><sort><creationdate>20170101</creationdate><title>Optimizing Lifespan and Energy Consumption by Smart Meters in Green-Cloud-Based Smart Grids</title><author>Siddiqui, Isma Farah ; Lee, Scott Uk-Jin ; Abbas, Asad ; Bashir, Ali Kashif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-c2a93c8afa23e457bf62ebc999cb21c4f8d8eb6f7e638d70fcb88593412bd8293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Clean energy</topic><topic>Cloud computing</topic><topic>Clouds</topic><topic>Computer networks</topic><topic>Datasets</topic><topic>Distributed processing</topic><topic>Electronic devices</topic><topic>Energy consumption</topic><topic>Energy sources</topic><topic>Fog Computing</topic><topic>Green Cloud</topic><topic>Green products</topic><topic>IoT-enabled Smart Meter</topic><topic>Life span</topic><topic>Optimization</topic><topic>Reservoirs</topic><topic>Resource description framework</topic><topic>Semantic Web</topic><topic>Smart Grid</topic><topic>Smart grids</topic><topic>Smart meters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddiqui, Isma Farah</creatorcontrib><creatorcontrib>Lee, Scott Uk-Jin</creatorcontrib><creatorcontrib>Abbas, Asad</creatorcontrib><creatorcontrib>Bashir, Ali Kashif</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siddiqui, Isma Farah</au><au>Lee, Scott Uk-Jin</au><au>Abbas, Asad</au><au>Bashir, Ali Kashif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Lifespan and Energy Consumption by Smart Meters in Green-Cloud-Based Smart Grids</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>5</volume><spage>20934</spage><epage>20945</epage><pages>20934-20945</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Green clouds optimally use energy resources in large-scale distributed computing environments. Large scale industries such as smart grids are adopting green cloud paradigm to optimize energy needs and to maximize lifespan of smart devices such as smart meters. Both, energy consumption and lifespan of smart meters are critical factors in smart grid applications where performance of these factors decreases with each cycle of grid operation such as record reading and dispatching to the edge nodes. Also, considering large-scale infrastructure of smart grid, replacing out-of-energy and faulty meters is not an economical solution. Therefore, to optimize the energy consumption and lifespan of smart meters, we present a knowledge-based usage strategy for smart meters in this paper. Our proposed scheme is novel and generates custom graph of smart meter tuple datasets and fetches the frequency of lifespan and energy consumption factors. Due to very large-scale dataset graphs, the said factors are fine-grained through R3F filter over modified Hungarian algorithm for smart grid repository. After receiving the exact status of usage, the grid places smart meters in logical partitions according to their utilization frequency. The experimental evaluation shows that the proposed approach enhances lifespan frequency of 100 smart meters by 72% and optimizes energy consumption at an overall percentile of 21% in the green cloud-based smart grid.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2017.2752242</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8457-3097</orcidid><orcidid>https://orcid.org/0000-0001-7491-8023</orcidid><orcidid>https://orcid.org/0000-0003-2601-9327</orcidid><orcidid>https://orcid.org/0000-0002-2058-4336</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2017-01, Vol.5, p.20934-20945
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2017_2752242
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IEEE Xplore Open Access Journals
subjects Algorithms
Clean energy
Cloud computing
Clouds
Computer networks
Datasets
Distributed processing
Electronic devices
Energy consumption
Energy sources
Fog Computing
Green Cloud
Green products
IoT-enabled Smart Meter
Life span
Optimization
Reservoirs
Resource description framework
Semantic Web
Smart Grid
Smart grids
Smart meters
title Optimizing Lifespan and Energy Consumption by Smart Meters in Green-Cloud-Based Smart Grids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A33%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Lifespan%20and%20Energy%20Consumption%20by%20Smart%20Meters%20in%20Green-Cloud-Based%20Smart%20Grids&rft.jtitle=IEEE%20access&rft.au=Siddiqui,%20Isma%20Farah&rft.date=2017-01-01&rft.volume=5&rft.spage=20934&rft.epage=20945&rft.pages=20934-20945&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2017.2752242&rft_dat=%3Cproquest_cross%3E2455940806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455940806&rft_id=info:pmid/&rft_ieee_id=8046004&rft_doaj_id=oai_doaj_org_article_04755b6fa160473ba49226d16e9e10f5&rfr_iscdi=true