Hybrid feedback laws for a class of cascade nonlinear control systems
A stabilization problem for a class of nonlinear control systems is considered. Systems in this class can be viewed as a cascade connection of a linear time-invariant subsystem, a nonlinear time-periodic static subsystem, and an integrator. Hybrid logic-based feedback controllers are constructed to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 1996-09, Vol.41 (9), p.1271-1282 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1282 |
---|---|
container_issue | 9 |
container_start_page | 1271 |
container_title | IEEE transactions on automatic control |
container_volume | 41 |
creator | Kolmanovsky, I. McClamroch, N.H. |
description | A stabilization problem for a class of nonlinear control systems is considered. Systems in this class can be viewed as a cascade connection of a linear time-invariant subsystem, a nonlinear time-periodic static subsystem, and an integrator. Hybrid logic-based feedback controllers are constructed to globally stabilize these systems to the origin. The controllers operate by switching between various time-periodic control functions at discrete-time instants. As specific applications, we consider stabilization of nonholonomic control systems in power form to the origin and stabilization of trajectories for a class of nonlinear control systems. Numerical examples of global stabilization and tracking are reported. |
doi_str_mv | 10.1109/9.536497 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_9_536497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>536497</ieee_id><sourcerecordid>28338731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-1b22606d3c25ec78ef5851301baff77629b91083b4d36c92642af006d4e0c8923</originalsourceid><addsrcrecordid>eNqN0E1LAzEQBuAgCtYqePaUg4iXrfnYZJOjlGqFghc9L9nsBFbTTc20SP-9W7b07GkY5pn38BJyy9mMc2af7ExJXdrqjEy4UqYQSshzMmGMm8IKoy_JFeLXsOqy5BOyWO6b3LU0ALSN8980ul-kIWXqqI8OkaZAvUPvWqB96mPXg8vUp36bU6S4xy2s8ZpcBBcRbo5zSj5fFh_zZbF6f32bP68KL6XaFrwRQjPdSi8U-MpAUEZxyXjjQqgqLWxjOTOyKVupvRW6FC6w4aEE5o0VckoextxNTj87wG297tBDjK6HtMNaGGOt0vYfUEpTST7AxxH6nBAzhHqTu7XL-5qz-lBobeux0IHeHzMPdcSQXe87PHkpyspoPbC7kXUAcLoeM_4A0C97XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28338731</pqid></control><display><type>article</type><title>Hybrid feedback laws for a class of cascade nonlinear control systems</title><source>IEEE Electronic Library (IEL)</source><creator>Kolmanovsky, I. ; McClamroch, N.H.</creator><creatorcontrib>Kolmanovsky, I. ; McClamroch, N.H.</creatorcontrib><description>A stabilization problem for a class of nonlinear control systems is considered. Systems in this class can be viewed as a cascade connection of a linear time-invariant subsystem, a nonlinear time-periodic static subsystem, and an integrator. Hybrid logic-based feedback controllers are constructed to globally stabilize these systems to the origin. The controllers operate by switching between various time-periodic control functions at discrete-time instants. As specific applications, we consider stabilization of nonholonomic control systems in power form to the origin and stabilization of trajectories for a class of nonlinear control systems. Numerical examples of global stabilization and tracking are reported.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.536497</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive control ; Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control systems ; Control theory. Systems ; Exact sciences and technology ; Kinematics ; Laboratories ; Matrix converters ; Nonlinear control systems ; Space vehicles ; State feedback ; Transmission line matrix methods ; Vehicle dynamics</subject><ispartof>IEEE transactions on automatic control, 1996-09, Vol.41 (9), p.1271-1282</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-1b22606d3c25ec78ef5851301baff77629b91083b4d36c92642af006d4e0c8923</citedby><cites>FETCH-LOGICAL-c335t-1b22606d3c25ec78ef5851301baff77629b91083b4d36c92642af006d4e0c8923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/536497$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/536497$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3247866$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolmanovsky, I.</creatorcontrib><creatorcontrib>McClamroch, N.H.</creatorcontrib><title>Hybrid feedback laws for a class of cascade nonlinear control systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A stabilization problem for a class of nonlinear control systems is considered. Systems in this class can be viewed as a cascade connection of a linear time-invariant subsystem, a nonlinear time-periodic static subsystem, and an integrator. Hybrid logic-based feedback controllers are constructed to globally stabilize these systems to the origin. The controllers operate by switching between various time-periodic control functions at discrete-time instants. As specific applications, we consider stabilization of nonholonomic control systems in power form to the origin and stabilization of trajectories for a class of nonlinear control systems. Numerical examples of global stabilization and tracking are reported.</description><subject>Adaptive control</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Kinematics</subject><subject>Laboratories</subject><subject>Matrix converters</subject><subject>Nonlinear control systems</subject><subject>Space vehicles</subject><subject>State feedback</subject><subject>Transmission line matrix methods</subject><subject>Vehicle dynamics</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LAzEQBuAgCtYqePaUg4iXrfnYZJOjlGqFghc9L9nsBFbTTc20SP-9W7b07GkY5pn38BJyy9mMc2af7ExJXdrqjEy4UqYQSshzMmGMm8IKoy_JFeLXsOqy5BOyWO6b3LU0ALSN8980ul-kIWXqqI8OkaZAvUPvWqB96mPXg8vUp36bU6S4xy2s8ZpcBBcRbo5zSj5fFh_zZbF6f32bP68KL6XaFrwRQjPdSi8U-MpAUEZxyXjjQqgqLWxjOTOyKVupvRW6FC6w4aEE5o0VckoextxNTj87wG297tBDjK6HtMNaGGOt0vYfUEpTST7AxxH6nBAzhHqTu7XL-5qz-lBobeux0IHeHzMPdcSQXe87PHkpyspoPbC7kXUAcLoeM_4A0C97XA</recordid><startdate>19960901</startdate><enddate>19960901</enddate><creator>Kolmanovsky, I.</creator><creator>McClamroch, N.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19960901</creationdate><title>Hybrid feedback laws for a class of cascade nonlinear control systems</title><author>Kolmanovsky, I. ; McClamroch, N.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-1b22606d3c25ec78ef5851301baff77629b91083b4d36c92642af006d4e0c8923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Adaptive control</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Kinematics</topic><topic>Laboratories</topic><topic>Matrix converters</topic><topic>Nonlinear control systems</topic><topic>Space vehicles</topic><topic>State feedback</topic><topic>Transmission line matrix methods</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolmanovsky, I.</creatorcontrib><creatorcontrib>McClamroch, N.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kolmanovsky, I.</au><au>McClamroch, N.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid feedback laws for a class of cascade nonlinear control systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1996-09-01</date><risdate>1996</risdate><volume>41</volume><issue>9</issue><spage>1271</spage><epage>1282</epage><pages>1271-1282</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A stabilization problem for a class of nonlinear control systems is considered. Systems in this class can be viewed as a cascade connection of a linear time-invariant subsystem, a nonlinear time-periodic static subsystem, and an integrator. Hybrid logic-based feedback controllers are constructed to globally stabilize these systems to the origin. The controllers operate by switching between various time-periodic control functions at discrete-time instants. As specific applications, we consider stabilization of nonholonomic control systems in power form to the origin and stabilization of trajectories for a class of nonlinear control systems. Numerical examples of global stabilization and tracking are reported.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.536497</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1996-09, Vol.41 (9), p.1271-1282 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_crossref_primary_10_1109_9_536497 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Applied sciences Computer science control theory systems Control system synthesis Control systems Control theory. Systems Exact sciences and technology Kinematics Laboratories Matrix converters Nonlinear control systems Space vehicles State feedback Transmission line matrix methods Vehicle dynamics |
title | Hybrid feedback laws for a class of cascade nonlinear control systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20feedback%20laws%20for%20a%20class%20of%20cascade%20nonlinear%20control%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Kolmanovsky,%20I.&rft.date=1996-09-01&rft.volume=41&rft.issue=9&rft.spage=1271&rft.epage=1282&rft.pages=1271-1282&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.536497&rft_dat=%3Cproquest_RIE%3E28338731%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28338731&rft_id=info:pmid/&rft_ieee_id=536497&rfr_iscdi=true |