Hybrid feedback laws for a class of cascade nonlinear control systems

A stabilization problem for a class of nonlinear control systems is considered. Systems in this class can be viewed as a cascade connection of a linear time-invariant subsystem, a nonlinear time-periodic static subsystem, and an integrator. Hybrid logic-based feedback controllers are constructed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1996-09, Vol.41 (9), p.1271-1282
Hauptverfasser: Kolmanovsky, I., McClamroch, N.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1282
container_issue 9
container_start_page 1271
container_title IEEE transactions on automatic control
container_volume 41
creator Kolmanovsky, I.
McClamroch, N.H.
description A stabilization problem for a class of nonlinear control systems is considered. Systems in this class can be viewed as a cascade connection of a linear time-invariant subsystem, a nonlinear time-periodic static subsystem, and an integrator. Hybrid logic-based feedback controllers are constructed to globally stabilize these systems to the origin. The controllers operate by switching between various time-periodic control functions at discrete-time instants. As specific applications, we consider stabilization of nonholonomic control systems in power form to the origin and stabilization of trajectories for a class of nonlinear control systems. Numerical examples of global stabilization and tracking are reported.
doi_str_mv 10.1109/9.536497
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_9_536497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>536497</ieee_id><sourcerecordid>28338731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-1b22606d3c25ec78ef5851301baff77629b91083b4d36c92642af006d4e0c8923</originalsourceid><addsrcrecordid>eNqN0E1LAzEQBuAgCtYqePaUg4iXrfnYZJOjlGqFghc9L9nsBFbTTc20SP-9W7b07GkY5pn38BJyy9mMc2af7ExJXdrqjEy4UqYQSshzMmGMm8IKoy_JFeLXsOqy5BOyWO6b3LU0ALSN8980ul-kIWXqqI8OkaZAvUPvWqB96mPXg8vUp36bU6S4xy2s8ZpcBBcRbo5zSj5fFh_zZbF6f32bP68KL6XaFrwRQjPdSi8U-MpAUEZxyXjjQqgqLWxjOTOyKVupvRW6FC6w4aEE5o0VckoextxNTj87wG297tBDjK6HtMNaGGOt0vYfUEpTST7AxxH6nBAzhHqTu7XL-5qz-lBobeux0IHeHzMPdcSQXe87PHkpyspoPbC7kXUAcLoeM_4A0C97XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28338731</pqid></control><display><type>article</type><title>Hybrid feedback laws for a class of cascade nonlinear control systems</title><source>IEEE Electronic Library (IEL)</source><creator>Kolmanovsky, I. ; McClamroch, N.H.</creator><creatorcontrib>Kolmanovsky, I. ; McClamroch, N.H.</creatorcontrib><description>A stabilization problem for a class of nonlinear control systems is considered. Systems in this class can be viewed as a cascade connection of a linear time-invariant subsystem, a nonlinear time-periodic static subsystem, and an integrator. Hybrid logic-based feedback controllers are constructed to globally stabilize these systems to the origin. The controllers operate by switching between various time-periodic control functions at discrete-time instants. As specific applications, we consider stabilization of nonholonomic control systems in power form to the origin and stabilization of trajectories for a class of nonlinear control systems. Numerical examples of global stabilization and tracking are reported.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.536497</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive control ; Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control systems ; Control theory. Systems ; Exact sciences and technology ; Kinematics ; Laboratories ; Matrix converters ; Nonlinear control systems ; Space vehicles ; State feedback ; Transmission line matrix methods ; Vehicle dynamics</subject><ispartof>IEEE transactions on automatic control, 1996-09, Vol.41 (9), p.1271-1282</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-1b22606d3c25ec78ef5851301baff77629b91083b4d36c92642af006d4e0c8923</citedby><cites>FETCH-LOGICAL-c335t-1b22606d3c25ec78ef5851301baff77629b91083b4d36c92642af006d4e0c8923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/536497$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/536497$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3247866$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kolmanovsky, I.</creatorcontrib><creatorcontrib>McClamroch, N.H.</creatorcontrib><title>Hybrid feedback laws for a class of cascade nonlinear control systems</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A stabilization problem for a class of nonlinear control systems is considered. Systems in this class can be viewed as a cascade connection of a linear time-invariant subsystem, a nonlinear time-periodic static subsystem, and an integrator. Hybrid logic-based feedback controllers are constructed to globally stabilize these systems to the origin. The controllers operate by switching between various time-periodic control functions at discrete-time instants. As specific applications, we consider stabilization of nonholonomic control systems in power form to the origin and stabilization of trajectories for a class of nonlinear control systems. Numerical examples of global stabilization and tracking are reported.</description><subject>Adaptive control</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Kinematics</subject><subject>Laboratories</subject><subject>Matrix converters</subject><subject>Nonlinear control systems</subject><subject>Space vehicles</subject><subject>State feedback</subject><subject>Transmission line matrix methods</subject><subject>Vehicle dynamics</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LAzEQBuAgCtYqePaUg4iXrfnYZJOjlGqFghc9L9nsBFbTTc20SP-9W7b07GkY5pn38BJyy9mMc2af7ExJXdrqjEy4UqYQSshzMmGMm8IKoy_JFeLXsOqy5BOyWO6b3LU0ALSN8980ul-kIWXqqI8OkaZAvUPvWqB96mPXg8vUp36bU6S4xy2s8ZpcBBcRbo5zSj5fFh_zZbF6f32bP68KL6XaFrwRQjPdSi8U-MpAUEZxyXjjQqgqLWxjOTOyKVupvRW6FC6w4aEE5o0VckoextxNTj87wG297tBDjK6HtMNaGGOt0vYfUEpTST7AxxH6nBAzhHqTu7XL-5qz-lBobeux0IHeHzMPdcSQXe87PHkpyspoPbC7kXUAcLoeM_4A0C97XA</recordid><startdate>19960901</startdate><enddate>19960901</enddate><creator>Kolmanovsky, I.</creator><creator>McClamroch, N.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19960901</creationdate><title>Hybrid feedback laws for a class of cascade nonlinear control systems</title><author>Kolmanovsky, I. ; McClamroch, N.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-1b22606d3c25ec78ef5851301baff77629b91083b4d36c92642af006d4e0c8923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Adaptive control</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Kinematics</topic><topic>Laboratories</topic><topic>Matrix converters</topic><topic>Nonlinear control systems</topic><topic>Space vehicles</topic><topic>State feedback</topic><topic>Transmission line matrix methods</topic><topic>Vehicle dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolmanovsky, I.</creatorcontrib><creatorcontrib>McClamroch, N.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kolmanovsky, I.</au><au>McClamroch, N.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid feedback laws for a class of cascade nonlinear control systems</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1996-09-01</date><risdate>1996</risdate><volume>41</volume><issue>9</issue><spage>1271</spage><epage>1282</epage><pages>1271-1282</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A stabilization problem for a class of nonlinear control systems is considered. Systems in this class can be viewed as a cascade connection of a linear time-invariant subsystem, a nonlinear time-periodic static subsystem, and an integrator. Hybrid logic-based feedback controllers are constructed to globally stabilize these systems to the origin. The controllers operate by switching between various time-periodic control functions at discrete-time instants. As specific applications, we consider stabilization of nonholonomic control systems in power form to the origin and stabilization of trajectories for a class of nonlinear control systems. Numerical examples of global stabilization and tracking are reported.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.536497</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1996-09, Vol.41 (9), p.1271-1282
issn 0018-9286
1558-2523
language eng
recordid cdi_crossref_primary_10_1109_9_536497
source IEEE Electronic Library (IEL)
subjects Adaptive control
Applied sciences
Computer science
control theory
systems
Control system synthesis
Control systems
Control theory. Systems
Exact sciences and technology
Kinematics
Laboratories
Matrix converters
Nonlinear control systems
Space vehicles
State feedback
Transmission line matrix methods
Vehicle dynamics
title Hybrid feedback laws for a class of cascade nonlinear control systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A52%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20feedback%20laws%20for%20a%20class%20of%20cascade%20nonlinear%20control%20systems&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Kolmanovsky,%20I.&rft.date=1996-09-01&rft.volume=41&rft.issue=9&rft.spage=1271&rft.epage=1282&rft.pages=1271-1282&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.536497&rft_dat=%3Cproquest_RIE%3E28338731%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28338731&rft_id=info:pmid/&rft_ieee_id=536497&rfr_iscdi=true