A minimum total power methodology for projecting limits on CMOS GSI

A circuit design methodology minimizing total power drain of a static complementary metal-oxide-semiconductor (CMOS) random logic network for a prescribed performance, operating temperature range, and short channel threshold voltage rolloff is investigated. Physical, continuous, smooth, and compact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2000-06, Vol.8 (3), p.235-251
Hauptverfasser: Bhavnagarwala, A.J., Austin, B.L., Bowman, K.A., Meindl, J.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A circuit design methodology minimizing total power drain of a static complementary metal-oxide-semiconductor (CMOS) random logic network for a prescribed performance, operating temperature range, and short channel threshold voltage rolloff is investigated. Physical, continuous, smooth, and compact "transregional" MOSFET drain current models that consider high-field effects in scaled devices and permit tradeoffs between saturation drive current and subthreshold leakage current are employed to model CMOS circuit performance and power dissipation at low voltages. Transregional models are used in conjunction with physical short channel MOSFET threshold voltage rolloff models and stochastic interconnect distributions to project optimal supply voltages, threshold voltages, and device channel widths minimizing total power dissipated by CMOS logic circuits for each National Technology Roadmap for Semiconductors (NTRS) technology generation. Optimum supply voltage, corresponding to minimum total power dissipation, is projected to scale to 510 mV for the 50-nm 10-GHz CMOS generation in the year 2012. Techniques exploiting datapath parallelism to further scale the supply voltage are shown to offer decreasing reductions in power dissipation with technology scaling.
ISSN:1063-8210
1557-9999
DOI:10.1109/92.845891