Color image enhancement via chromaticity diffusion

A novel approach for color image denoising is proposed in this paper. The algorithm is based on separating the color data into chromaticity and brightness, and then processing each one of these components with partial differential equations or diffusion flows. In the proposed algorithm, each color p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2001-05, Vol.10 (5), p.701-707
Hauptverfasser: Tang, B., Sapiro, G., Caselles, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 707
container_issue 5
container_start_page 701
container_title IEEE transactions on image processing
container_volume 10
creator Tang, B.
Sapiro, G.
Caselles, V.
description A novel approach for color image denoising is proposed in this paper. The algorithm is based on separating the color data into chromaticity and brightness, and then processing each one of these components with partial differential equations or diffusion flows. In the proposed algorithm, each color pixel is considered as an n-dimensional vector. The vectors' direction, a unit vector, gives the chromaticity, while the magnitude represents the pixel brightness. The chromaticity is processed with a system of coupled diffusion equations adapted from the theory of harmonic maps in liquid crystals. This theory deals with the regularization of vectorial data, while satisfying the intrinsic unit norm constraint of directional data such as chromaticity. Both isotropic and anisotropic diffusion flows are presented for this n-dimensional chromaticity diffusion flow. The brightness is processed by a scalar median filter or any of the popular and well established anisotropic diffusion flows for scalar image enhancement. We present the underlying theory, a number of examples, and briefly compare with the current literature.
doi_str_mv 10.1109/83.918563
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_83_918563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>918563</ieee_id><sourcerecordid>734186405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-6055657ef88904734c37865cc2aeacad57c379f305790bff7f6b5a1989f9d933</originalsourceid><addsrcrecordid>eNqN0UtLAzEQB_Agiq3Vg1cPsigoHrYmm_dRii8oeOl9SbOJTdlHTXaFfntTdrHgQT0lJD9mhvkDcI7gFCEo7wWeSiQowwdgjCRBKYQkO4x3SHnKEZEjcBLCGkJEKGLHYIRERiRjcAyyWVM2PnGVejeJqVeq1qYydZt8OpXolW8q1Trt2m1SOGu74Jr6FBxZVQZzNpwTsHh6XMxe0vnb8-vsYZ5qQmGbMkgpo9xYISQkHBONuWBU60wZpVVBeXyQFscZJVxayy1bUoWkkFYWEuMJuO3Lbnzz0ZnQ5pUL2pSlqk3ThVwiwigklPwpY28kGIE0yptfZSYixOQfkDEqCZMRXv2A66bzddxLLgRhGcvIbsC7HmnfhOCNzTc-btxvcwTzXYK5wHmfYLSXQ8FuWZliL4fIIrgegApaldbHyFz4dpJSLnhUF71yxpj9Z9_jC6UAp0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884626244</pqid></control><display><type>article</type><title>Color image enhancement via chromaticity diffusion</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, B. ; Sapiro, G. ; Caselles, V.</creator><creatorcontrib>Tang, B. ; Sapiro, G. ; Caselles, V.</creatorcontrib><description>A novel approach for color image denoising is proposed in this paper. The algorithm is based on separating the color data into chromaticity and brightness, and then processing each one of these components with partial differential equations or diffusion flows. In the proposed algorithm, each color pixel is considered as an n-dimensional vector. The vectors' direction, a unit vector, gives the chromaticity, while the magnitude represents the pixel brightness. The chromaticity is processed with a system of coupled diffusion equations adapted from the theory of harmonic maps in liquid crystals. This theory deals with the regularization of vectorial data, while satisfying the intrinsic unit norm constraint of directional data such as chromaticity. Both isotropic and anisotropic diffusion flows are presented for this n-dimensional chromaticity diffusion flow. The brightness is processed by a scalar median filter or any of the popular and well established anisotropic diffusion flows for scalar image enhancement. We present the underlying theory, a number of examples, and briefly compare with the current literature.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.918563</identifier><identifier>PMID: 18249660</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Anisotropic magnetoresistance ; Anisotropy ; Applied sciences ; Brightness ; Chromaticity ; Color ; Diffusion ; Engineering profession ; Exact sciences and technology ; Image processing ; Information, signal and communications theory ; Liquid crystals ; Mathematical analysis ; Noise reduction ; Partial differential equations ; Power harmonic filters ; Signal processing ; Smoothing methods ; Studies ; Telecommunications and information theory ; Vectors (mathematics)</subject><ispartof>IEEE transactions on image processing, 2001-05, Vol.10 (5), p.701-707</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-6055657ef88904734c37865cc2aeacad57c379f305790bff7f6b5a1989f9d933</citedby><cites>FETCH-LOGICAL-c450t-6055657ef88904734c37865cc2aeacad57c379f305790bff7f6b5a1989f9d933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/918563$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/918563$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=955787$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18249660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, B.</creatorcontrib><creatorcontrib>Sapiro, G.</creatorcontrib><creatorcontrib>Caselles, V.</creatorcontrib><title>Color image enhancement via chromaticity diffusion</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>A novel approach for color image denoising is proposed in this paper. The algorithm is based on separating the color data into chromaticity and brightness, and then processing each one of these components with partial differential equations or diffusion flows. In the proposed algorithm, each color pixel is considered as an n-dimensional vector. The vectors' direction, a unit vector, gives the chromaticity, while the magnitude represents the pixel brightness. The chromaticity is processed with a system of coupled diffusion equations adapted from the theory of harmonic maps in liquid crystals. This theory deals with the regularization of vectorial data, while satisfying the intrinsic unit norm constraint of directional data such as chromaticity. Both isotropic and anisotropic diffusion flows are presented for this n-dimensional chromaticity diffusion flow. The brightness is processed by a scalar median filter or any of the popular and well established anisotropic diffusion flows for scalar image enhancement. We present the underlying theory, a number of examples, and briefly compare with the current literature.</description><subject>Algorithms</subject><subject>Anisotropic magnetoresistance</subject><subject>Anisotropy</subject><subject>Applied sciences</subject><subject>Brightness</subject><subject>Chromaticity</subject><subject>Color</subject><subject>Diffusion</subject><subject>Engineering profession</subject><subject>Exact sciences and technology</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Liquid crystals</subject><subject>Mathematical analysis</subject><subject>Noise reduction</subject><subject>Partial differential equations</subject><subject>Power harmonic filters</subject><subject>Signal processing</subject><subject>Smoothing methods</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Vectors (mathematics)</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0UtLAzEQB_Agiq3Vg1cPsigoHrYmm_dRii8oeOl9SbOJTdlHTXaFfntTdrHgQT0lJD9mhvkDcI7gFCEo7wWeSiQowwdgjCRBKYQkO4x3SHnKEZEjcBLCGkJEKGLHYIRERiRjcAyyWVM2PnGVejeJqVeq1qYydZt8OpXolW8q1Trt2m1SOGu74Jr6FBxZVQZzNpwTsHh6XMxe0vnb8-vsYZ5qQmGbMkgpo9xYISQkHBONuWBU60wZpVVBeXyQFscZJVxayy1bUoWkkFYWEuMJuO3Lbnzz0ZnQ5pUL2pSlqk3ThVwiwigklPwpY28kGIE0yptfZSYixOQfkDEqCZMRXv2A66bzddxLLgRhGcvIbsC7HmnfhOCNzTc-btxvcwTzXYK5wHmfYLSXQ8FuWZliL4fIIrgegApaldbHyFz4dpJSLnhUF71yxpj9Z9_jC6UAp0E</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Tang, B.</creator><creator>Sapiro, G.</creator><creator>Caselles, V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010501</creationdate><title>Color image enhancement via chromaticity diffusion</title><author>Tang, B. ; Sapiro, G. ; Caselles, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-6055657ef88904734c37865cc2aeacad57c379f305790bff7f6b5a1989f9d933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Anisotropic magnetoresistance</topic><topic>Anisotropy</topic><topic>Applied sciences</topic><topic>Brightness</topic><topic>Chromaticity</topic><topic>Color</topic><topic>Diffusion</topic><topic>Engineering profession</topic><topic>Exact sciences and technology</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Liquid crystals</topic><topic>Mathematical analysis</topic><topic>Noise reduction</topic><topic>Partial differential equations</topic><topic>Power harmonic filters</topic><topic>Signal processing</topic><topic>Smoothing methods</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, B.</creatorcontrib><creatorcontrib>Sapiro, G.</creatorcontrib><creatorcontrib>Caselles, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, B.</au><au>Sapiro, G.</au><au>Caselles, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Color image enhancement via chromaticity diffusion</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2001-05-01</date><risdate>2001</risdate><volume>10</volume><issue>5</issue><spage>701</spage><epage>707</epage><pages>701-707</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>A novel approach for color image denoising is proposed in this paper. The algorithm is based on separating the color data into chromaticity and brightness, and then processing each one of these components with partial differential equations or diffusion flows. In the proposed algorithm, each color pixel is considered as an n-dimensional vector. The vectors' direction, a unit vector, gives the chromaticity, while the magnitude represents the pixel brightness. The chromaticity is processed with a system of coupled diffusion equations adapted from the theory of harmonic maps in liquid crystals. This theory deals with the regularization of vectorial data, while satisfying the intrinsic unit norm constraint of directional data such as chromaticity. Both isotropic and anisotropic diffusion flows are presented for this n-dimensional chromaticity diffusion flow. The brightness is processed by a scalar median filter or any of the popular and well established anisotropic diffusion flows for scalar image enhancement. We present the underlying theory, a number of examples, and briefly compare with the current literature.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18249660</pmid><doi>10.1109/83.918563</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2001-05, Vol.10 (5), p.701-707
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_83_918563
source IEEE Electronic Library (IEL)
subjects Algorithms
Anisotropic magnetoresistance
Anisotropy
Applied sciences
Brightness
Chromaticity
Color
Diffusion
Engineering profession
Exact sciences and technology
Image processing
Information, signal and communications theory
Liquid crystals
Mathematical analysis
Noise reduction
Partial differential equations
Power harmonic filters
Signal processing
Smoothing methods
Studies
Telecommunications and information theory
Vectors (mathematics)
title Color image enhancement via chromaticity diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Color%20image%20enhancement%20via%20chromaticity%20diffusion&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Tang,%20B.&rft.date=2001-05-01&rft.volume=10&rft.issue=5&rft.spage=701&rft.epage=707&rft.pages=701-707&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.918563&rft_dat=%3Cproquest_RIE%3E734186405%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884626244&rft_id=info:pmid/18249660&rft_ieee_id=918563&rfr_iscdi=true