Blind image deconvolution using a robust GCD approach

In this correspondence, a new viewpoint is proposed for estimating an image from its distorted versions in presence of noise without the a priori knowledge of the distortion functions. In z-domain, the desired image can be regarded as the greatest common polynomial divisor among the distorted versio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 1999-02, Vol.8 (2), p.295-301
Hauptverfasser: Unnikrishna Pillai, S., Liang, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301
container_issue 2
container_start_page 295
container_title IEEE transactions on image processing
container_volume 8
creator Unnikrishna Pillai, S.
Liang, B.
description In this correspondence, a new viewpoint is proposed for estimating an image from its distorted versions in presence of noise without the a priori knowledge of the distortion functions. In z-domain, the desired image can be regarded as the greatest common polynomial divisor among the distorted versions. With the assumption that the distortion filters are finite impulse response (FIR) and relatively coprime, in the absence of noise, this becomes a problem of taking the greatest common divisor (GCD) of two or more two-dimensional (2-D) polynomials. Exact GCD is not desirable because even extremely small variations due to quantization error or additive noise can destroy the integrity of the polynomial system and lead to a trivial solution. Our approach to this blind deconvolution approximation problem introduces a new robust interpolative 2-D GCD method based on a one-dimensional (1-D) Sylvester-type GCD algorithm. Experimental results with both synthetically blurred images and real motion-blurred pictures show that it is computationally efficient and moderately noise robust.
doi_str_mv 10.1109/83.743863
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_83_743863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>743863</ieee_id><sourcerecordid>919914201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-b3f6ce5b3e34486fa36c01f6114db4e92d4899f2174d8e6e093202a0bd18c143</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAgipvTg1cP0oMoHjrzJm_zcdSpUxh42b2kaTorXTubVvC_N2PF3fSUQH48D-Qh5BzoFIDqO8WnErkS_ICMQSPElCI7DHeayFgC6hE58f6DUsAExDEZgWJCohRjkjxUZZ1H5dqsXJQ729RfTdV3ZVNHvS_rVWSitsl630Xz2WNkNpu2Mfb9lBwVpvLubDgnZPn8tJy9xIu3-evsfhFbZNjFGS-EdUnGHUdUojBcWAqFAMA8Q6dZjkrrgoHEXDnhqOaMMkOzHJQF5BNys4sNrZ-98126Lr11VWVq1_Q-1aA1IKPwr5QcQSlQNMjrPyULSqBU_0OhJAOWBHi7g7ZtvG9dkW7a8J_tdwo03e6TKp7u9gn2cgjts7XL93IYJICrARhvTVW0pral3zsRQvS282LHSufc7-tQ8gPBFJw9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26872125</pqid></control><display><type>article</type><title>Blind image deconvolution using a robust GCD approach</title><source>IEEE Electronic Library (IEL)</source><creator>Unnikrishna Pillai, S. ; Liang, B.</creator><creatorcontrib>Unnikrishna Pillai, S. ; Liang, B.</creatorcontrib><description>In this correspondence, a new viewpoint is proposed for estimating an image from its distorted versions in presence of noise without the a priori knowledge of the distortion functions. In z-domain, the desired image can be regarded as the greatest common polynomial divisor among the distorted versions. With the assumption that the distortion filters are finite impulse response (FIR) and relatively coprime, in the absence of noise, this becomes a problem of taking the greatest common divisor (GCD) of two or more two-dimensional (2-D) polynomials. Exact GCD is not desirable because even extremely small variations due to quantization error or additive noise can destroy the integrity of the polynomial system and lead to a trivial solution. Our approach to this blind deconvolution approximation problem introduces a new robust interpolative 2-D GCD method based on a one-dimensional (1-D) Sylvester-type GCD algorithm. Experimental results with both synthetically blurred images and real motion-blurred pictures show that it is computationally efficient and moderately noise robust.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.743863</identifier><identifier>PMID: 18267476</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Blinds ; Decoding ; Deconvolution ; Distortion ; Distortion measurement ; Exact sciences and technology ; Image coding ; Image processing ; Impulse response ; Information, signal and communications theory ; Mathematical analysis ; Mathematical models ; Noise ; Noise robustness ; Polynomials ; Predictive coding ; PSNR ; Signal processing ; Telecommunications and information theory ; Vector quantization</subject><ispartof>IEEE transactions on image processing, 1999-02, Vol.8 (2), p.295-301</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-b3f6ce5b3e34486fa36c01f6114db4e92d4899f2174d8e6e093202a0bd18c143</citedby><cites>FETCH-LOGICAL-c424t-b3f6ce5b3e34486fa36c01f6114db4e92d4899f2174d8e6e093202a0bd18c143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/743863$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/743863$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1663395$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18267476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Unnikrishna Pillai, S.</creatorcontrib><creatorcontrib>Liang, B.</creatorcontrib><title>Blind image deconvolution using a robust GCD approach</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this correspondence, a new viewpoint is proposed for estimating an image from its distorted versions in presence of noise without the a priori knowledge of the distortion functions. In z-domain, the desired image can be regarded as the greatest common polynomial divisor among the distorted versions. With the assumption that the distortion filters are finite impulse response (FIR) and relatively coprime, in the absence of noise, this becomes a problem of taking the greatest common divisor (GCD) of two or more two-dimensional (2-D) polynomials. Exact GCD is not desirable because even extremely small variations due to quantization error or additive noise can destroy the integrity of the polynomial system and lead to a trivial solution. Our approach to this blind deconvolution approximation problem introduces a new robust interpolative 2-D GCD method based on a one-dimensional (1-D) Sylvester-type GCD algorithm. Experimental results with both synthetically blurred images and real motion-blurred pictures show that it is computationally efficient and moderately noise robust.</description><subject>Applied sciences</subject><subject>Blinds</subject><subject>Decoding</subject><subject>Deconvolution</subject><subject>Distortion</subject><subject>Distortion measurement</subject><subject>Exact sciences and technology</subject><subject>Image coding</subject><subject>Image processing</subject><subject>Impulse response</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Noise robustness</subject><subject>Polynomials</subject><subject>Predictive coding</subject><subject>PSNR</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>Vector quantization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c1LwzAYBvAgipvTg1cP0oMoHjrzJm_zcdSpUxh42b2kaTorXTubVvC_N2PF3fSUQH48D-Qh5BzoFIDqO8WnErkS_ICMQSPElCI7DHeayFgC6hE58f6DUsAExDEZgWJCohRjkjxUZZ1H5dqsXJQ729RfTdV3ZVNHvS_rVWSitsl630Xz2WNkNpu2Mfb9lBwVpvLubDgnZPn8tJy9xIu3-evsfhFbZNjFGS-EdUnGHUdUojBcWAqFAMA8Q6dZjkrrgoHEXDnhqOaMMkOzHJQF5BNys4sNrZ-98126Lr11VWVq1_Q-1aA1IKPwr5QcQSlQNMjrPyULSqBU_0OhJAOWBHi7g7ZtvG9dkW7a8J_tdwo03e6TKp7u9gn2cgjts7XL93IYJICrARhvTVW0pral3zsRQvS282LHSufc7-tQ8gPBFJw9</recordid><startdate>19990201</startdate><enddate>19990201</enddate><creator>Unnikrishna Pillai, S.</creator><creator>Liang, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19990201</creationdate><title>Blind image deconvolution using a robust GCD approach</title><author>Unnikrishna Pillai, S. ; Liang, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-b3f6ce5b3e34486fa36c01f6114db4e92d4899f2174d8e6e093202a0bd18c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Blinds</topic><topic>Decoding</topic><topic>Deconvolution</topic><topic>Distortion</topic><topic>Distortion measurement</topic><topic>Exact sciences and technology</topic><topic>Image coding</topic><topic>Image processing</topic><topic>Impulse response</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Noise robustness</topic><topic>Polynomials</topic><topic>Predictive coding</topic><topic>PSNR</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unnikrishna Pillai, S.</creatorcontrib><creatorcontrib>Liang, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Unnikrishna Pillai, S.</au><au>Liang, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind image deconvolution using a robust GCD approach</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>1999-02-01</date><risdate>1999</risdate><volume>8</volume><issue>2</issue><spage>295</spage><epage>301</epage><pages>295-301</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this correspondence, a new viewpoint is proposed for estimating an image from its distorted versions in presence of noise without the a priori knowledge of the distortion functions. In z-domain, the desired image can be regarded as the greatest common polynomial divisor among the distorted versions. With the assumption that the distortion filters are finite impulse response (FIR) and relatively coprime, in the absence of noise, this becomes a problem of taking the greatest common divisor (GCD) of two or more two-dimensional (2-D) polynomials. Exact GCD is not desirable because even extremely small variations due to quantization error or additive noise can destroy the integrity of the polynomial system and lead to a trivial solution. Our approach to this blind deconvolution approximation problem introduces a new robust interpolative 2-D GCD method based on a one-dimensional (1-D) Sylvester-type GCD algorithm. Experimental results with both synthetically blurred images and real motion-blurred pictures show that it is computationally efficient and moderately noise robust.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18267476</pmid><doi>10.1109/83.743863</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 1999-02, Vol.8 (2), p.295-301
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_83_743863
source IEEE Electronic Library (IEL)
subjects Applied sciences
Blinds
Decoding
Deconvolution
Distortion
Distortion measurement
Exact sciences and technology
Image coding
Image processing
Impulse response
Information, signal and communications theory
Mathematical analysis
Mathematical models
Noise
Noise robustness
Polynomials
Predictive coding
PSNR
Signal processing
Telecommunications and information theory
Vector quantization
title Blind image deconvolution using a robust GCD approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20image%20deconvolution%20using%20a%20robust%20GCD%20approach&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Unnikrishna%20Pillai,%20S.&rft.date=1999-02-01&rft.volume=8&rft.issue=2&rft.spage=295&rft.epage=301&rft.pages=295-301&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.743863&rft_dat=%3Cproquest_RIE%3E919914201%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26872125&rft_id=info:pmid/18267476&rft_ieee_id=743863&rfr_iscdi=true