Blind image deconvolution using a robust GCD approach
In this correspondence, a new viewpoint is proposed for estimating an image from its distorted versions in presence of noise without the a priori knowledge of the distortion functions. In z-domain, the desired image can be regarded as the greatest common polynomial divisor among the distorted versio...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 1999-02, Vol.8 (2), p.295-301 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 301 |
---|---|
container_issue | 2 |
container_start_page | 295 |
container_title | IEEE transactions on image processing |
container_volume | 8 |
creator | Unnikrishna Pillai, S. Liang, B. |
description | In this correspondence, a new viewpoint is proposed for estimating an image from its distorted versions in presence of noise without the a priori knowledge of the distortion functions. In z-domain, the desired image can be regarded as the greatest common polynomial divisor among the distorted versions. With the assumption that the distortion filters are finite impulse response (FIR) and relatively coprime, in the absence of noise, this becomes a problem of taking the greatest common divisor (GCD) of two or more two-dimensional (2-D) polynomials. Exact GCD is not desirable because even extremely small variations due to quantization error or additive noise can destroy the integrity of the polynomial system and lead to a trivial solution. Our approach to this blind deconvolution approximation problem introduces a new robust interpolative 2-D GCD method based on a one-dimensional (1-D) Sylvester-type GCD algorithm. Experimental results with both synthetically blurred images and real motion-blurred pictures show that it is computationally efficient and moderately noise robust. |
doi_str_mv | 10.1109/83.743863 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_83_743863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>743863</ieee_id><sourcerecordid>919914201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-b3f6ce5b3e34486fa36c01f6114db4e92d4899f2174d8e6e093202a0bd18c143</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAgipvTg1cP0oMoHjrzJm_zcdSpUxh42b2kaTorXTubVvC_N2PF3fSUQH48D-Qh5BzoFIDqO8WnErkS_ICMQSPElCI7DHeayFgC6hE58f6DUsAExDEZgWJCohRjkjxUZZ1H5dqsXJQ729RfTdV3ZVNHvS_rVWSitsl630Xz2WNkNpu2Mfb9lBwVpvLubDgnZPn8tJy9xIu3-evsfhFbZNjFGS-EdUnGHUdUojBcWAqFAMA8Q6dZjkrrgoHEXDnhqOaMMkOzHJQF5BNys4sNrZ-98126Lr11VWVq1_Q-1aA1IKPwr5QcQSlQNMjrPyULSqBU_0OhJAOWBHi7g7ZtvG9dkW7a8J_tdwo03e6TKp7u9gn2cgjts7XL93IYJICrARhvTVW0pral3zsRQvS282LHSufc7-tQ8gPBFJw9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26872125</pqid></control><display><type>article</type><title>Blind image deconvolution using a robust GCD approach</title><source>IEEE Electronic Library (IEL)</source><creator>Unnikrishna Pillai, S. ; Liang, B.</creator><creatorcontrib>Unnikrishna Pillai, S. ; Liang, B.</creatorcontrib><description>In this correspondence, a new viewpoint is proposed for estimating an image from its distorted versions in presence of noise without the a priori knowledge of the distortion functions. In z-domain, the desired image can be regarded as the greatest common polynomial divisor among the distorted versions. With the assumption that the distortion filters are finite impulse response (FIR) and relatively coprime, in the absence of noise, this becomes a problem of taking the greatest common divisor (GCD) of two or more two-dimensional (2-D) polynomials. Exact GCD is not desirable because even extremely small variations due to quantization error or additive noise can destroy the integrity of the polynomial system and lead to a trivial solution. Our approach to this blind deconvolution approximation problem introduces a new robust interpolative 2-D GCD method based on a one-dimensional (1-D) Sylvester-type GCD algorithm. Experimental results with both synthetically blurred images and real motion-blurred pictures show that it is computationally efficient and moderately noise robust.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.743863</identifier><identifier>PMID: 18267476</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Blinds ; Decoding ; Deconvolution ; Distortion ; Distortion measurement ; Exact sciences and technology ; Image coding ; Image processing ; Impulse response ; Information, signal and communications theory ; Mathematical analysis ; Mathematical models ; Noise ; Noise robustness ; Polynomials ; Predictive coding ; PSNR ; Signal processing ; Telecommunications and information theory ; Vector quantization</subject><ispartof>IEEE transactions on image processing, 1999-02, Vol.8 (2), p.295-301</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-b3f6ce5b3e34486fa36c01f6114db4e92d4899f2174d8e6e093202a0bd18c143</citedby><cites>FETCH-LOGICAL-c424t-b3f6ce5b3e34486fa36c01f6114db4e92d4899f2174d8e6e093202a0bd18c143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/743863$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/743863$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1663395$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18267476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Unnikrishna Pillai, S.</creatorcontrib><creatorcontrib>Liang, B.</creatorcontrib><title>Blind image deconvolution using a robust GCD approach</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this correspondence, a new viewpoint is proposed for estimating an image from its distorted versions in presence of noise without the a priori knowledge of the distortion functions. In z-domain, the desired image can be regarded as the greatest common polynomial divisor among the distorted versions. With the assumption that the distortion filters are finite impulse response (FIR) and relatively coprime, in the absence of noise, this becomes a problem of taking the greatest common divisor (GCD) of two or more two-dimensional (2-D) polynomials. Exact GCD is not desirable because even extremely small variations due to quantization error or additive noise can destroy the integrity of the polynomial system and lead to a trivial solution. Our approach to this blind deconvolution approximation problem introduces a new robust interpolative 2-D GCD method based on a one-dimensional (1-D) Sylvester-type GCD algorithm. Experimental results with both synthetically blurred images and real motion-blurred pictures show that it is computationally efficient and moderately noise robust.</description><subject>Applied sciences</subject><subject>Blinds</subject><subject>Decoding</subject><subject>Deconvolution</subject><subject>Distortion</subject><subject>Distortion measurement</subject><subject>Exact sciences and technology</subject><subject>Image coding</subject><subject>Image processing</subject><subject>Impulse response</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Noise robustness</subject><subject>Polynomials</subject><subject>Predictive coding</subject><subject>PSNR</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>Vector quantization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c1LwzAYBvAgipvTg1cP0oMoHjrzJm_zcdSpUxh42b2kaTorXTubVvC_N2PF3fSUQH48D-Qh5BzoFIDqO8WnErkS_ICMQSPElCI7DHeayFgC6hE58f6DUsAExDEZgWJCohRjkjxUZZ1H5dqsXJQ729RfTdV3ZVNHvS_rVWSitsl630Xz2WNkNpu2Mfb9lBwVpvLubDgnZPn8tJy9xIu3-evsfhFbZNjFGS-EdUnGHUdUojBcWAqFAMA8Q6dZjkrrgoHEXDnhqOaMMkOzHJQF5BNys4sNrZ-98126Lr11VWVq1_Q-1aA1IKPwr5QcQSlQNMjrPyULSqBU_0OhJAOWBHi7g7ZtvG9dkW7a8J_tdwo03e6TKp7u9gn2cgjts7XL93IYJICrARhvTVW0pral3zsRQvS282LHSufc7-tQ8gPBFJw9</recordid><startdate>19990201</startdate><enddate>19990201</enddate><creator>Unnikrishna Pillai, S.</creator><creator>Liang, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19990201</creationdate><title>Blind image deconvolution using a robust GCD approach</title><author>Unnikrishna Pillai, S. ; Liang, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-b3f6ce5b3e34486fa36c01f6114db4e92d4899f2174d8e6e093202a0bd18c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Blinds</topic><topic>Decoding</topic><topic>Deconvolution</topic><topic>Distortion</topic><topic>Distortion measurement</topic><topic>Exact sciences and technology</topic><topic>Image coding</topic><topic>Image processing</topic><topic>Impulse response</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Noise robustness</topic><topic>Polynomials</topic><topic>Predictive coding</topic><topic>PSNR</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unnikrishna Pillai, S.</creatorcontrib><creatorcontrib>Liang, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Unnikrishna Pillai, S.</au><au>Liang, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind image deconvolution using a robust GCD approach</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>1999-02-01</date><risdate>1999</risdate><volume>8</volume><issue>2</issue><spage>295</spage><epage>301</epage><pages>295-301</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this correspondence, a new viewpoint is proposed for estimating an image from its distorted versions in presence of noise without the a priori knowledge of the distortion functions. In z-domain, the desired image can be regarded as the greatest common polynomial divisor among the distorted versions. With the assumption that the distortion filters are finite impulse response (FIR) and relatively coprime, in the absence of noise, this becomes a problem of taking the greatest common divisor (GCD) of two or more two-dimensional (2-D) polynomials. Exact GCD is not desirable because even extremely small variations due to quantization error or additive noise can destroy the integrity of the polynomial system and lead to a trivial solution. Our approach to this blind deconvolution approximation problem introduces a new robust interpolative 2-D GCD method based on a one-dimensional (1-D) Sylvester-type GCD algorithm. Experimental results with both synthetically blurred images and real motion-blurred pictures show that it is computationally efficient and moderately noise robust.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18267476</pmid><doi>10.1109/83.743863</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 1999-02, Vol.8 (2), p.295-301 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_83_743863 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Blinds Decoding Deconvolution Distortion Distortion measurement Exact sciences and technology Image coding Image processing Impulse response Information, signal and communications theory Mathematical analysis Mathematical models Noise Noise robustness Polynomials Predictive coding PSNR Signal processing Telecommunications and information theory Vector quantization |
title | Blind image deconvolution using a robust GCD approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20image%20deconvolution%20using%20a%20robust%20GCD%20approach&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Unnikrishna%20Pillai,%20S.&rft.date=1999-02-01&rft.volume=8&rft.issue=2&rft.spage=295&rft.epage=301&rft.pages=295-301&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.743863&rft_dat=%3Cproquest_RIE%3E919914201%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26872125&rft_id=info:pmid/18267476&rft_ieee_id=743863&rfr_iscdi=true |