A modification of the discrete polynomial transform

The discrete polynomial transform (DPT) has been introduced as a computationally efficient algorithm for estimating the phase parameters of constant-amplitude polynomial phase signals. We present a modification of the DPT, which improves the estimation accuracy. We show by a perturbation analysis th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 1998-05, Vol.46 (5), p.1452-1455
Hauptverfasser: Golden, S., Friedlander, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1455
container_issue 5
container_start_page 1452
container_title IEEE transactions on signal processing
container_volume 46
creator Golden, S.
Friedlander, B.
description The discrete polynomial transform (DPT) has been introduced as a computationally efficient algorithm for estimating the phase parameters of constant-amplitude polynomial phase signals. We present a modification of the DPT, which improves the estimation accuracy. We show by a perturbation analysis that the mean-squared error of the estimates is reduced when the order of the polynomial is three or greater.
doi_str_mv 10.1109/78.668809
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_78_668809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>668809</ieee_id><sourcerecordid>28397108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-24b5a181376b0539eeda2db0163d9ce89bb2530eff29460658f71ebb1ff852253</originalsourceid><addsrcrecordid>eNo9kM1LxDAQxYMouK4evHrqQQQPXSdJmybHZfELFrwoeCtpOsFI29Ske9j_3ixd9jQD7zdvZh4htxRWlIJ6quRKCClBnZEFVQXNoajEeeqh5Hkpq-9LchXjLwAtCiUWhK-z3rfOOqMn54fM22z6wax10QScMBt9tx9873SXTUEP0frQX5MLq7uIN8e6JF8vz5-bt3z78fq-WW9zw0FMOSuaUlNJeSWatF0htpq1DVDBW2VQqqZhJQe0lqlCgCilrSg2DbVWlixJS_Iw-47B_-0wTnWfzsKu0wP6XayZ5KqiIBP4OIMm-BgD2noMrtdhX1OoD7HUlaznWBJ7fzTV0ejOpqeMi6cBxlgB5cHybsYcIp7Uo8c_i9po2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28397108</pqid></control><display><type>article</type><title>A modification of the discrete polynomial transform</title><source>IEEE Electronic Library (IEL)</source><creator>Golden, S. ; Friedlander, B.</creator><creatorcontrib>Golden, S. ; Friedlander, B.</creatorcontrib><description>The discrete polynomial transform (DPT) has been introduced as a computationally efficient algorithm for estimating the phase parameters of constant-amplitude polynomial phase signals. We present a modification of the DPT, which improves the estimation accuracy. We show by a perturbation analysis that the mean-squared error of the estimates is reduced when the order of the polynomial is three or greater.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.668809</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Chirp ; Delay estimation ; Detection, estimation, filtering, equalization, prediction ; Discrete transforms ; Exact sciences and technology ; Finite difference methods ; Information, signal and communications theory ; Parameter estimation ; Phase estimation ; Polynomials ; Pulse compression methods ; Radar ; Signal and communications theory ; Signal processing algorithms ; Signal, noise ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 1998-05, Vol.46 (5), p.1452-1455</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-24b5a181376b0539eeda2db0163d9ce89bb2530eff29460658f71ebb1ff852253</citedby><cites>FETCH-LOGICAL-c306t-24b5a181376b0539eeda2db0163d9ce89bb2530eff29460658f71ebb1ff852253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/668809$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/668809$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2224058$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Golden, S.</creatorcontrib><creatorcontrib>Friedlander, B.</creatorcontrib><title>A modification of the discrete polynomial transform</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The discrete polynomial transform (DPT) has been introduced as a computationally efficient algorithm for estimating the phase parameters of constant-amplitude polynomial phase signals. We present a modification of the DPT, which improves the estimation accuracy. We show by a perturbation analysis that the mean-squared error of the estimates is reduced when the order of the polynomial is three or greater.</description><subject>Applied sciences</subject><subject>Chirp</subject><subject>Delay estimation</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Discrete transforms</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>Information, signal and communications theory</subject><subject>Parameter estimation</subject><subject>Phase estimation</subject><subject>Polynomials</subject><subject>Pulse compression methods</subject><subject>Radar</subject><subject>Signal and communications theory</subject><subject>Signal processing algorithms</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LxDAQxYMouK4evHrqQQQPXSdJmybHZfELFrwoeCtpOsFI29Ske9j_3ixd9jQD7zdvZh4htxRWlIJ6quRKCClBnZEFVQXNoajEeeqh5Hkpq-9LchXjLwAtCiUWhK-z3rfOOqMn54fM22z6wax10QScMBt9tx9873SXTUEP0frQX5MLq7uIN8e6JF8vz5-bt3z78fq-WW9zw0FMOSuaUlNJeSWatF0htpq1DVDBW2VQqqZhJQe0lqlCgCilrSg2DbVWlixJS_Iw-47B_-0wTnWfzsKu0wP6XayZ5KqiIBP4OIMm-BgD2noMrtdhX1OoD7HUlaznWBJ7fzTV0ejOpqeMi6cBxlgB5cHybsYcIp7Uo8c_i9po2Q</recordid><startdate>19980501</startdate><enddate>19980501</enddate><creator>Golden, S.</creator><creator>Friedlander, B.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980501</creationdate><title>A modification of the discrete polynomial transform</title><author>Golden, S. ; Friedlander, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-24b5a181376b0539eeda2db0163d9ce89bb2530eff29460658f71ebb1ff852253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Chirp</topic><topic>Delay estimation</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Discrete transforms</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>Information, signal and communications theory</topic><topic>Parameter estimation</topic><topic>Phase estimation</topic><topic>Polynomials</topic><topic>Pulse compression methods</topic><topic>Radar</topic><topic>Signal and communications theory</topic><topic>Signal processing algorithms</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golden, S.</creatorcontrib><creatorcontrib>Friedlander, B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Golden, S.</au><au>Friedlander, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A modification of the discrete polynomial transform</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1998-05-01</date><risdate>1998</risdate><volume>46</volume><issue>5</issue><spage>1452</spage><epage>1455</epage><pages>1452-1455</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The discrete polynomial transform (DPT) has been introduced as a computationally efficient algorithm for estimating the phase parameters of constant-amplitude polynomial phase signals. We present a modification of the DPT, which improves the estimation accuracy. We show by a perturbation analysis that the mean-squared error of the estimates is reduced when the order of the polynomial is three or greater.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.668809</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1998-05, Vol.46 (5), p.1452-1455
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_78_668809
source IEEE Electronic Library (IEL)
subjects Applied sciences
Chirp
Delay estimation
Detection, estimation, filtering, equalization, prediction
Discrete transforms
Exact sciences and technology
Finite difference methods
Information, signal and communications theory
Parameter estimation
Phase estimation
Polynomials
Pulse compression methods
Radar
Signal and communications theory
Signal processing algorithms
Signal, noise
Telecommunications and information theory
title A modification of the discrete polynomial transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20modification%20of%20the%20discrete%20polynomial%20transform&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Golden,%20S.&rft.date=1998-05-01&rft.volume=46&rft.issue=5&rft.spage=1452&rft.epage=1455&rft.pages=1452-1455&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.668809&rft_dat=%3Cproquest_RIE%3E28397108%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28397108&rft_id=info:pmid/&rft_ieee_id=668809&rfr_iscdi=true