Parameter estimation of cyclostationary AM time series with application to missing observations

Time series with systematic misses occur often in practice and can be modeled as amplitude modulated ARMA processes. With this as a motivating application, modeling of cyclostationary amplitude modulated time series is addressed in the paper. Assuming that the modulating sequence is (almost) periodi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 1994-09, Vol.42 (9), p.2408-2419
Hauptverfasser: Giannakis, G.B., Guotong Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2419
container_issue 9
container_start_page 2408
container_title IEEE transactions on signal processing
container_volume 42
creator Giannakis, G.B.
Guotong Zhou
description Time series with systematic misses occur often in practice and can be modeled as amplitude modulated ARMA processes. With this as a motivating application, modeling of cyclostationary amplitude modulated time series is addressed in the paper. Assuming that the modulating sequence is (almost) periodic, parameter estimation algorithms are developed based on second- and higher order cumulants of the resulting cyclostationary observations, which may be corrupted by any additive stationary noise of unknown covariance. If unknown, the modulating sequence can be recovered even in the presence of additive (perhaps nonstationary and colored) Gaussian, or any symmetrically distributed, noise. If the ARMA process is nonGaussian, cyclic cumulants of order greater than three can identify (non)causal and (non)minimum phase models from partial noisy data. Simulation experiments corroborate the theoretical results.< >
doi_str_mv 10.1109/78.317862
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_78_317862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>317862</ieee_id><sourcerecordid>28554968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-92e3067f49ecb06563c4f1a635a3c75678223e3008da62018e60a50f9ed954083</originalsourceid><addsrcrecordid>eNpFkMtLAzEQxoMoWKsHr55yEMHDarLZvI6l-IKKHhS8hTSd1ch2syZbpf-9abfoaV6_-ZhvEDql5IpSoq-lumJUKlHuoRHVFS1IJcV-zglnBVfy7RAdpfRJCK0qLUbIPNtol9BDxJB6v7S9Dy0ONXZr14TUb2sb13jyiPMYcILoIeEf339g23WNd8NKH_DSp-TbdxzmGfrettMxOqhtk-BkF8fo9fbmZXpfzJ7uHqaTWeEYEX2hS8hR1pUGNyeCC-aqmlrBuGVOciFVWbKMELWwoiRUgSCWk1rDQvOKKDZGF4NuF8PXKlsx-RoHTWNbCKtkSsV5NrwBLwfQxZBShNp0MduOa0OJ2bzQSGWGF2b2fCdqk7NNHW3rfPpbYIyUSvOMnQ2YB4D_6aDxC-FVeRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28554968</pqid></control><display><type>article</type><title>Parameter estimation of cyclostationary AM time series with application to missing observations</title><source>IEEE Electronic Library (IEL)</source><creator>Giannakis, G.B. ; Guotong Zhou</creator><creatorcontrib>Giannakis, G.B. ; Guotong Zhou</creatorcontrib><description>Time series with systematic misses occur often in practice and can be modeled as amplitude modulated ARMA processes. With this as a motivating application, modeling of cyclostationary amplitude modulated time series is addressed in the paper. Assuming that the modulating sequence is (almost) periodic, parameter estimation algorithms are developed based on second- and higher order cumulants of the resulting cyclostationary observations, which may be corrupted by any additive stationary noise of unknown covariance. If unknown, the modulating sequence can be recovered even in the presence of additive (perhaps nonstationary and colored) Gaussian, or any symmetrically distributed, noise. If the ARMA process is nonGaussian, cyclic cumulants of order greater than three can identify (non)causal and (non)minimum phase models from partial noisy data. Simulation experiments corroborate the theoretical results.&lt; &gt;</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/78.317862</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Additive noise ; Amplitude modulation ; Applied sciences ; Colored noise ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Gaussian noise ; Information, signal and communications theory ; Parameter estimation ; Phase noise ; Radar applications ; Signal and communications theory ; Signal, noise ; Telecommunications and information theory ; Time series analysis ; Underwater acoustics ; Underwater communication</subject><ispartof>IEEE transactions on signal processing, 1994-09, Vol.42 (9), p.2408-2419</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-92e3067f49ecb06563c4f1a635a3c75678223e3008da62018e60a50f9ed954083</citedby><cites>FETCH-LOGICAL-c306t-92e3067f49ecb06563c4f1a635a3c75678223e3008da62018e60a50f9ed954083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/317862$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23910,23911,25119,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/317862$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3302895$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Giannakis, G.B.</creatorcontrib><creatorcontrib>Guotong Zhou</creatorcontrib><title>Parameter estimation of cyclostationary AM time series with application to missing observations</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Time series with systematic misses occur often in practice and can be modeled as amplitude modulated ARMA processes. With this as a motivating application, modeling of cyclostationary amplitude modulated time series is addressed in the paper. Assuming that the modulating sequence is (almost) periodic, parameter estimation algorithms are developed based on second- and higher order cumulants of the resulting cyclostationary observations, which may be corrupted by any additive stationary noise of unknown covariance. If unknown, the modulating sequence can be recovered even in the presence of additive (perhaps nonstationary and colored) Gaussian, or any symmetrically distributed, noise. If the ARMA process is nonGaussian, cyclic cumulants of order greater than three can identify (non)causal and (non)minimum phase models from partial noisy data. Simulation experiments corroborate the theoretical results.&lt; &gt;</description><subject>Additive noise</subject><subject>Amplitude modulation</subject><subject>Applied sciences</subject><subject>Colored noise</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Gaussian noise</subject><subject>Information, signal and communications theory</subject><subject>Parameter estimation</subject><subject>Phase noise</subject><subject>Radar applications</subject><subject>Signal and communications theory</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Time series analysis</subject><subject>Underwater acoustics</subject><subject>Underwater communication</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpFkMtLAzEQxoMoWKsHr55yEMHDarLZvI6l-IKKHhS8hTSd1ch2syZbpf-9abfoaV6_-ZhvEDql5IpSoq-lumJUKlHuoRHVFS1IJcV-zglnBVfy7RAdpfRJCK0qLUbIPNtol9BDxJB6v7S9Dy0ONXZr14TUb2sb13jyiPMYcILoIeEf339g23WNd8NKH_DSp-TbdxzmGfrettMxOqhtk-BkF8fo9fbmZXpfzJ7uHqaTWeEYEX2hS8hR1pUGNyeCC-aqmlrBuGVOciFVWbKMELWwoiRUgSCWk1rDQvOKKDZGF4NuF8PXKlsx-RoHTWNbCKtkSsV5NrwBLwfQxZBShNp0MduOa0OJ2bzQSGWGF2b2fCdqk7NNHW3rfPpbYIyUSvOMnQ2YB4D_6aDxC-FVeRk</recordid><startdate>19940901</startdate><enddate>19940901</enddate><creator>Giannakis, G.B.</creator><creator>Guotong Zhou</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19940901</creationdate><title>Parameter estimation of cyclostationary AM time series with application to missing observations</title><author>Giannakis, G.B. ; Guotong Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-92e3067f49ecb06563c4f1a635a3c75678223e3008da62018e60a50f9ed954083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Additive noise</topic><topic>Amplitude modulation</topic><topic>Applied sciences</topic><topic>Colored noise</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Gaussian noise</topic><topic>Information, signal and communications theory</topic><topic>Parameter estimation</topic><topic>Phase noise</topic><topic>Radar applications</topic><topic>Signal and communications theory</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Time series analysis</topic><topic>Underwater acoustics</topic><topic>Underwater communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giannakis, G.B.</creatorcontrib><creatorcontrib>Guotong Zhou</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Giannakis, G.B.</au><au>Guotong Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter estimation of cyclostationary AM time series with application to missing observations</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>1994-09-01</date><risdate>1994</risdate><volume>42</volume><issue>9</issue><spage>2408</spage><epage>2419</epage><pages>2408-2419</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Time series with systematic misses occur often in practice and can be modeled as amplitude modulated ARMA processes. With this as a motivating application, modeling of cyclostationary amplitude modulated time series is addressed in the paper. Assuming that the modulating sequence is (almost) periodic, parameter estimation algorithms are developed based on second- and higher order cumulants of the resulting cyclostationary observations, which may be corrupted by any additive stationary noise of unknown covariance. If unknown, the modulating sequence can be recovered even in the presence of additive (perhaps nonstationary and colored) Gaussian, or any symmetrically distributed, noise. If the ARMA process is nonGaussian, cyclic cumulants of order greater than three can identify (non)causal and (non)minimum phase models from partial noisy data. Simulation experiments corroborate the theoretical results.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/78.317862</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 1994-09, Vol.42 (9), p.2408-2419
issn 1053-587X
1941-0476
language eng
recordid cdi_crossref_primary_10_1109_78_317862
source IEEE Electronic Library (IEL)
subjects Additive noise
Amplitude modulation
Applied sciences
Colored noise
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Gaussian noise
Information, signal and communications theory
Parameter estimation
Phase noise
Radar applications
Signal and communications theory
Signal, noise
Telecommunications and information theory
Time series analysis
Underwater acoustics
Underwater communication
title Parameter estimation of cyclostationary AM time series with application to missing observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20estimation%20of%20cyclostationary%20AM%20time%20series%20with%20application%20to%20missing%20observations&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Giannakis,%20G.B.&rft.date=1994-09-01&rft.volume=42&rft.issue=9&rft.spage=2408&rft.epage=2419&rft.pages=2408-2419&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/78.317862&rft_dat=%3Cproquest_RIE%3E28554968%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28554968&rft_id=info:pmid/&rft_ieee_id=317862&rfr_iscdi=true