Superconductive multi-chip module process for high speed digital applications

We report on the development of a superconducting multi-chip module (MCM) process for high speed digital packaging applications, which allows superconducting microstrip connections of superconducting chips with impedances up to 50 /spl Omega/. The MCM process uses a low temperature polymer, benzocyc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 1997-06, Vol.7 (2), p.2627-2630
Hauptverfasser: Abelson, L.A., Elmadjian, R.N., Kerber, G.L., Smith, A.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2630
container_issue 2
container_start_page 2627
container_title IEEE transactions on applied superconductivity
container_volume 7
creator Abelson, L.A.
Elmadjian, R.N.
Kerber, G.L.
Smith, A.D.
description We report on the development of a superconducting multi-chip module (MCM) process for high speed digital packaging applications, which allows superconducting microstrip connections of superconducting chips with impedances up to 50 /spl Omega/. The MCM process uses a low temperature polymer, benzocyclobutene (BCB) dielectric, which has excellent planarization properties (>90%). The six mask MCM process uses three Nb wire layers, two BCB layers, and Ti/Pd/Au for the pad metallization. To maximize yield of 32 mm square MCM die, we optimized Nb deposition and BCB curing parameters to minimize stress-induced failures and reduce defect density. Current-carrying capabilities of signal lines and vias (5 /spl mu/m minimum design rule) are in excess of 20 mA//spl mu/m linewidth. We discuss successful packaging of superconducting chips, demonstrating error-free operation up to 5 Gbit/s, and other process improvements, such as the use of NbN wiring for 10 K operation.
doi_str_mv 10.1109/77.621778
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_77_621778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>621778</ieee_id><sourcerecordid>28861548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-89e7fc89caee580005dcf351fd1a12a3219bbb16dddbef0c3a5e13faa310d5cf3</originalsourceid><addsrcrecordid>eNqN0U1LxDAQBuAgCq6rB6-eehDBQ9dMsmnToyx-wYoH9VzSZLIbST9MWsF_b6XLXvU0A_PMy8AQcg50AUCLmzxfZAzyXB6QGQghUyZAHI49FZBKxvgxOYnxg1JYyqWYkefXocOg28YMundfmNSD712qt65L6tYMHpMutBpjTGwbkq3bbJPYIZrEuI3rlU9U13mnVe_aJp6SI6t8xLNdnZP3-7u31WO6fnl4Wt2uU80z2aeywNxqWWiFKCSlVBhtuQBrQAFTnEFRVRVkxpgKLdVcCQRuleJAjRjpnFxNueNtnwPGvqxd1Oi9arAdYsmKDLjk8DeUMgOxlP-A2XhgTkd4PUEd2hgD2rILrlbhuwRa_r6gzPNyesFoL3ehKmrlbVCNdnG_wCSVhWQju5iYQ8T9dJfxA7EGjxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28635170</pqid></control><display><type>article</type><title>Superconductive multi-chip module process for high speed digital applications</title><source>IEEE Electronic Library (IEL)</source><creator>Abelson, L.A. ; Elmadjian, R.N. ; Kerber, G.L. ; Smith, A.D.</creator><creatorcontrib>Abelson, L.A. ; Elmadjian, R.N. ; Kerber, G.L. ; Smith, A.D.</creatorcontrib><description>We report on the development of a superconducting multi-chip module (MCM) process for high speed digital packaging applications, which allows superconducting microstrip connections of superconducting chips with impedances up to 50 /spl Omega/. The MCM process uses a low temperature polymer, benzocyclobutene (BCB) dielectric, which has excellent planarization properties (&gt;90%). The six mask MCM process uses three Nb wire layers, two BCB layers, and Ti/Pd/Au for the pad metallization. To maximize yield of 32 mm square MCM die, we optimized Nb deposition and BCB curing parameters to minimize stress-induced failures and reduce defect density. Current-carrying capabilities of signal lines and vias (5 /spl mu/m minimum design rule) are in excess of 20 mA//spl mu/m linewidth. We discuss successful packaging of superconducting chips, demonstrating error-free operation up to 5 Gbit/s, and other process improvements, such as the use of NbN wiring for 10 K operation.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/77.621778</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Dielectrics ; Electronics ; Exact sciences and technology ; Impedance ; Microstrip ; Niobium ; Packaging ; Polymers ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Superconducting devices ; Superconducting epitaxial layers ; Superconducting filaments and wires ; Superconductivity ; Temperature</subject><ispartof>IEEE transactions on applied superconductivity, 1997-06, Vol.7 (2), p.2627-2630</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-89e7fc89caee580005dcf351fd1a12a3219bbb16dddbef0c3a5e13faa310d5cf3</citedby><cites>FETCH-LOGICAL-c368t-89e7fc89caee580005dcf351fd1a12a3219bbb16dddbef0c3a5e13faa310d5cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/621778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/621778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2808982$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Abelson, L.A.</creatorcontrib><creatorcontrib>Elmadjian, R.N.</creatorcontrib><creatorcontrib>Kerber, G.L.</creatorcontrib><creatorcontrib>Smith, A.D.</creatorcontrib><title>Superconductive multi-chip module process for high speed digital applications</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>We report on the development of a superconducting multi-chip module (MCM) process for high speed digital packaging applications, which allows superconducting microstrip connections of superconducting chips with impedances up to 50 /spl Omega/. The MCM process uses a low temperature polymer, benzocyclobutene (BCB) dielectric, which has excellent planarization properties (&gt;90%). The six mask MCM process uses three Nb wire layers, two BCB layers, and Ti/Pd/Au for the pad metallization. To maximize yield of 32 mm square MCM die, we optimized Nb deposition and BCB curing parameters to minimize stress-induced failures and reduce defect density. Current-carrying capabilities of signal lines and vias (5 /spl mu/m minimum design rule) are in excess of 20 mA//spl mu/m linewidth. We discuss successful packaging of superconducting chips, demonstrating error-free operation up to 5 Gbit/s, and other process improvements, such as the use of NbN wiring for 10 K operation.</description><subject>Applied sciences</subject><subject>Dielectrics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Impedance</subject><subject>Microstrip</subject><subject>Niobium</subject><subject>Packaging</subject><subject>Polymers</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Superconducting devices</subject><subject>Superconducting epitaxial layers</subject><subject>Superconducting filaments and wires</subject><subject>Superconductivity</subject><subject>Temperature</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqN0U1LxDAQBuAgCq6rB6-eehDBQ9dMsmnToyx-wYoH9VzSZLIbST9MWsF_b6XLXvU0A_PMy8AQcg50AUCLmzxfZAzyXB6QGQghUyZAHI49FZBKxvgxOYnxg1JYyqWYkefXocOg28YMundfmNSD712qt65L6tYMHpMutBpjTGwbkq3bbJPYIZrEuI3rlU9U13mnVe_aJp6SI6t8xLNdnZP3-7u31WO6fnl4Wt2uU80z2aeywNxqWWiFKCSlVBhtuQBrQAFTnEFRVRVkxpgKLdVcCQRuleJAjRjpnFxNueNtnwPGvqxd1Oi9arAdYsmKDLjk8DeUMgOxlP-A2XhgTkd4PUEd2hgD2rILrlbhuwRa_r6gzPNyesFoL3ehKmrlbVCNdnG_wCSVhWQju5iYQ8T9dJfxA7EGjxw</recordid><startdate>19970601</startdate><enddate>19970601</enddate><creator>Abelson, L.A.</creator><creator>Elmadjian, R.N.</creator><creator>Kerber, G.L.</creator><creator>Smith, A.D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>8BQ</scope><scope>JG9</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19970601</creationdate><title>Superconductive multi-chip module process for high speed digital applications</title><author>Abelson, L.A. ; Elmadjian, R.N. ; Kerber, G.L. ; Smith, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-89e7fc89caee580005dcf351fd1a12a3219bbb16dddbef0c3a5e13faa310d5cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Dielectrics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Impedance</topic><topic>Microstrip</topic><topic>Niobium</topic><topic>Packaging</topic><topic>Polymers</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Superconducting devices</topic><topic>Superconducting epitaxial layers</topic><topic>Superconducting filaments and wires</topic><topic>Superconductivity</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abelson, L.A.</creatorcontrib><creatorcontrib>Elmadjian, R.N.</creatorcontrib><creatorcontrib>Kerber, G.L.</creatorcontrib><creatorcontrib>Smith, A.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abelson, L.A.</au><au>Elmadjian, R.N.</au><au>Kerber, G.L.</au><au>Smith, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superconductive multi-chip module process for high speed digital applications</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>1997-06-01</date><risdate>1997</risdate><volume>7</volume><issue>2</issue><spage>2627</spage><epage>2630</epage><pages>2627-2630</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>We report on the development of a superconducting multi-chip module (MCM) process for high speed digital packaging applications, which allows superconducting microstrip connections of superconducting chips with impedances up to 50 /spl Omega/. The MCM process uses a low temperature polymer, benzocyclobutene (BCB) dielectric, which has excellent planarization properties (&gt;90%). The six mask MCM process uses three Nb wire layers, two BCB layers, and Ti/Pd/Au for the pad metallization. To maximize yield of 32 mm square MCM die, we optimized Nb deposition and BCB curing parameters to minimize stress-induced failures and reduce defect density. Current-carrying capabilities of signal lines and vias (5 /spl mu/m minimum design rule) are in excess of 20 mA//spl mu/m linewidth. We discuss successful packaging of superconducting chips, demonstrating error-free operation up to 5 Gbit/s, and other process improvements, such as the use of NbN wiring for 10 K operation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/77.621778</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 1997-06, Vol.7 (2), p.2627-2630
issn 1051-8223
1558-2515
language eng
recordid cdi_crossref_primary_10_1109_77_621778
source IEEE Electronic Library (IEL)
subjects Applied sciences
Dielectrics
Electronics
Exact sciences and technology
Impedance
Microstrip
Niobium
Packaging
Polymers
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Superconducting devices
Superconducting epitaxial layers
Superconducting filaments and wires
Superconductivity
Temperature
title Superconductive multi-chip module process for high speed digital applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superconductive%20multi-chip%20module%20process%20for%20high%20speed%20digital%20applications&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Abelson,%20L.A.&rft.date=1997-06-01&rft.volume=7&rft.issue=2&rft.spage=2627&rft.epage=2630&rft.pages=2627-2630&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/77.621778&rft_dat=%3Cproquest_RIE%3E28861548%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28635170&rft_id=info:pmid/&rft_ieee_id=621778&rfr_iscdi=true