Selecting radial basis function network centers with recursive orthogonal least squares training

Recursive orthogonal least squares (ROLS) is a numerically robust method for solving for the output layer weights of a radial basis function (RBF) network, and requires less computer memory than the batch alternative. In the paper, the use of ROLS is extended to selecting the centers of an RBF netwo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2000, Vol.11 (2), p.306-314
Hauptverfasser: Gomm, J.B., Yu, D.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue 2
container_start_page 306
container_title IEEE transaction on neural networks and learning systems
container_volume 11
creator Gomm, J.B.
Yu, D.L.
description Recursive orthogonal least squares (ROLS) is a numerically robust method for solving for the output layer weights of a radial basis function (RBF) network, and requires less computer memory than the batch alternative. In the paper, the use of ROLS is extended to selecting the centers of an RBF network. It is shown that the information available in an ROLS algorithm after network training can be used to sequentially select centers to minimize the network output error. This provides efficient methods for network reduction to achieve smaller architectures with acceptable accuracy and without retraining. Two selection methods are developed, forward and backward. The methods are illustrated in applications of RBF networks to modeling a nonlinear time series and a real multiinput-multioutput chemical process. The final network models obtained achieve acceptable accuracy with significant reductions in the number of required centers.
doi_str_mv 10.1109/72.839002
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_72_839002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>839002</ieee_id><sourcerecordid>2582275251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-f0b74c71e5131dfe541bf8cb49a2a749cd54c32bf6ec8c5162c19a8021b087e73</originalsourceid><addsrcrecordid>eNqF0c1PHSEQAHDS1NTPQ68eGuJB08Mqw8cCR2OqNjHpoXpeWd6sovsWBbam_72Y99ImPdQTBH4zwzCEfAZ2DMDsiebHRljG-AeyBVZCw5gVH-ueSdVYzvUm2c75gTGQirWfyCYYLq1u-Ra5_Ykj-hKmO5rcIriR9i6HTId5qqdxohOWl5geqcepYMr0JZR7mtDPKYdfSGMq9_EuTjVwRJcLzc-zS5hpSS5MNe0u2RjcmHFvve6Qm_Nv12eXzdWPi-9np1eNlwpKM7BeS68BFQhYDKgk9IPxvbSOOy2tXyjpBe-HFr3xClruwTrDOPTMaNRihxyt8j6l-DxjLt0yZI_j6CaMc-4syFbU7vm7UgshlJTSVHn4X8mNaq0B_j7UmtfirMKDf-BDnFP9vfpAzloljXlr5esK-RRzTjh0TyksXfrdAeveBt5p3q0GXu2XdcK5X-Lir1xPuIL9FQiI-Od6Hf0KS0ytlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920654887</pqid></control><display><type>article</type><title>Selecting radial basis function network centers with recursive orthogonal least squares training</title><source>IEEE Electronic Library (IEL)</source><creator>Gomm, J.B. ; Yu, D.L.</creator><creatorcontrib>Gomm, J.B. ; Yu, D.L.</creatorcontrib><description>Recursive orthogonal least squares (ROLS) is a numerically robust method for solving for the output layer weights of a radial basis function (RBF) network, and requires less computer memory than the batch alternative. In the paper, the use of ROLS is extended to selecting the centers of an RBF network. It is shown that the information available in an ROLS algorithm after network training can be used to sequentially select centers to minimize the network output error. This provides efficient methods for network reduction to achieve smaller architectures with acceptable accuracy and without retraining. Two selection methods are developed, forward and backward. The methods are illustrated in applications of RBF networks to modeling a nonlinear time series and a real multiinput-multioutput chemical process. The final network models obtained achieve acceptable accuracy with significant reductions in the number of required centers.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/72.839002</identifier><identifier>PMID: 18249762</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acceptability ; Accuracy ; Chemical processes ; Clustering algorithms ; Computer networks ; Least squares method ; Least squares methods ; Mathematical models ; Networks ; Neural networks ; Radial basis function ; Radial basis function networks ; Recursive ; Robustness ; Signal processing algorithms ; Training ; Training data ; Vectors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2000, Vol.11 (2), p.306-314</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-f0b74c71e5131dfe541bf8cb49a2a749cd54c32bf6ec8c5162c19a8021b087e73</citedby><cites>FETCH-LOGICAL-c451t-f0b74c71e5131dfe541bf8cb49a2a749cd54c32bf6ec8c5162c19a8021b087e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/839002$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4021,27921,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/839002$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18249762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomm, J.B.</creatorcontrib><creatorcontrib>Yu, D.L.</creatorcontrib><title>Selecting radial basis function network centers with recursive orthogonal least squares training</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>Recursive orthogonal least squares (ROLS) is a numerically robust method for solving for the output layer weights of a radial basis function (RBF) network, and requires less computer memory than the batch alternative. In the paper, the use of ROLS is extended to selecting the centers of an RBF network. It is shown that the information available in an ROLS algorithm after network training can be used to sequentially select centers to minimize the network output error. This provides efficient methods for network reduction to achieve smaller architectures with acceptable accuracy and without retraining. Two selection methods are developed, forward and backward. The methods are illustrated in applications of RBF networks to modeling a nonlinear time series and a real multiinput-multioutput chemical process. The final network models obtained achieve acceptable accuracy with significant reductions in the number of required centers.</description><subject>Acceptability</subject><subject>Accuracy</subject><subject>Chemical processes</subject><subject>Clustering algorithms</subject><subject>Computer networks</subject><subject>Least squares method</subject><subject>Least squares methods</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Radial basis function</subject><subject>Radial basis function networks</subject><subject>Recursive</subject><subject>Robustness</subject><subject>Signal processing algorithms</subject><subject>Training</subject><subject>Training data</subject><subject>Vectors</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c1PHSEQAHDS1NTPQ68eGuJB08Mqw8cCR2OqNjHpoXpeWd6sovsWBbam_72Y99ImPdQTBH4zwzCEfAZ2DMDsiebHRljG-AeyBVZCw5gVH-ueSdVYzvUm2c75gTGQirWfyCYYLq1u-Ra5_Ykj-hKmO5rcIriR9i6HTId5qqdxohOWl5geqcepYMr0JZR7mtDPKYdfSGMq9_EuTjVwRJcLzc-zS5hpSS5MNe0u2RjcmHFvve6Qm_Nv12eXzdWPi-9np1eNlwpKM7BeS68BFQhYDKgk9IPxvbSOOy2tXyjpBe-HFr3xClruwTrDOPTMaNRihxyt8j6l-DxjLt0yZI_j6CaMc-4syFbU7vm7UgshlJTSVHn4X8mNaq0B_j7UmtfirMKDf-BDnFP9vfpAzloljXlr5esK-RRzTjh0TyksXfrdAeveBt5p3q0GXu2XdcK5X-Lir1xPuIL9FQiI-Od6Hf0KS0ytlQ</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Gomm, J.B.</creator><creator>Yu, D.L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2000</creationdate><title>Selecting radial basis function network centers with recursive orthogonal least squares training</title><author>Gomm, J.B. ; Yu, D.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-f0b74c71e5131dfe541bf8cb49a2a749cd54c32bf6ec8c5162c19a8021b087e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Acceptability</topic><topic>Accuracy</topic><topic>Chemical processes</topic><topic>Clustering algorithms</topic><topic>Computer networks</topic><topic>Least squares method</topic><topic>Least squares methods</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Radial basis function</topic><topic>Radial basis function networks</topic><topic>Recursive</topic><topic>Robustness</topic><topic>Signal processing algorithms</topic><topic>Training</topic><topic>Training data</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Gomm, J.B.</creatorcontrib><creatorcontrib>Yu, D.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gomm, J.B.</au><au>Yu, D.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting radial basis function network centers with recursive orthogonal least squares training</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2000</date><risdate>2000</risdate><volume>11</volume><issue>2</issue><spage>306</spage><epage>314</epage><pages>306-314</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>Recursive orthogonal least squares (ROLS) is a numerically robust method for solving for the output layer weights of a radial basis function (RBF) network, and requires less computer memory than the batch alternative. In the paper, the use of ROLS is extended to selecting the centers of an RBF network. It is shown that the information available in an ROLS algorithm after network training can be used to sequentially select centers to minimize the network output error. This provides efficient methods for network reduction to achieve smaller architectures with acceptable accuracy and without retraining. Two selection methods are developed, forward and backward. The methods are illustrated in applications of RBF networks to modeling a nonlinear time series and a real multiinput-multioutput chemical process. The final network models obtained achieve acceptable accuracy with significant reductions in the number of required centers.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18249762</pmid><doi>10.1109/72.839002</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2000, Vol.11 (2), p.306-314
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_72_839002
source IEEE Electronic Library (IEL)
subjects Acceptability
Accuracy
Chemical processes
Clustering algorithms
Computer networks
Least squares method
Least squares methods
Mathematical models
Networks
Neural networks
Radial basis function
Radial basis function networks
Recursive
Robustness
Signal processing algorithms
Training
Training data
Vectors
title Selecting radial basis function network centers with recursive orthogonal least squares training
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20radial%20basis%20function%20network%20centers%20with%20recursive%20orthogonal%20least%20squares%20training&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Gomm,%20J.B.&rft.date=2000&rft.volume=11&rft.issue=2&rft.spage=306&rft.epage=314&rft.pages=306-314&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.839002&rft_dat=%3Cproquest_RIE%3E2582275251%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920654887&rft_id=info:pmid/18249762&rft_ieee_id=839002&rfr_iscdi=true