Selecting radial basis function network centers with recursive orthogonal least squares training
Recursive orthogonal least squares (ROLS) is a numerically robust method for solving for the output layer weights of a radial basis function (RBF) network, and requires less computer memory than the batch alternative. In the paper, the use of ROLS is extended to selecting the centers of an RBF netwo...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2000, Vol.11 (2), p.306-314 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 314 |
---|---|
container_issue | 2 |
container_start_page | 306 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 11 |
creator | Gomm, J.B. Yu, D.L. |
description | Recursive orthogonal least squares (ROLS) is a numerically robust method for solving for the output layer weights of a radial basis function (RBF) network, and requires less computer memory than the batch alternative. In the paper, the use of ROLS is extended to selecting the centers of an RBF network. It is shown that the information available in an ROLS algorithm after network training can be used to sequentially select centers to minimize the network output error. This provides efficient methods for network reduction to achieve smaller architectures with acceptable accuracy and without retraining. Two selection methods are developed, forward and backward. The methods are illustrated in applications of RBF networks to modeling a nonlinear time series and a real multiinput-multioutput chemical process. The final network models obtained achieve acceptable accuracy with significant reductions in the number of required centers. |
doi_str_mv | 10.1109/72.839002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_72_839002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>839002</ieee_id><sourcerecordid>2582275251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-f0b74c71e5131dfe541bf8cb49a2a749cd54c32bf6ec8c5162c19a8021b087e73</originalsourceid><addsrcrecordid>eNqF0c1PHSEQAHDS1NTPQ68eGuJB08Mqw8cCR2OqNjHpoXpeWd6sovsWBbam_72Y99ImPdQTBH4zwzCEfAZ2DMDsiebHRljG-AeyBVZCw5gVH-ueSdVYzvUm2c75gTGQirWfyCYYLq1u-Ra5_Ykj-hKmO5rcIriR9i6HTId5qqdxohOWl5geqcepYMr0JZR7mtDPKYdfSGMq9_EuTjVwRJcLzc-zS5hpSS5MNe0u2RjcmHFvve6Qm_Nv12eXzdWPi-9np1eNlwpKM7BeS68BFQhYDKgk9IPxvbSOOy2tXyjpBe-HFr3xClruwTrDOPTMaNRihxyt8j6l-DxjLt0yZI_j6CaMc-4syFbU7vm7UgshlJTSVHn4X8mNaq0B_j7UmtfirMKDf-BDnFP9vfpAzloljXlr5esK-RRzTjh0TyksXfrdAeveBt5p3q0GXu2XdcK5X-Lir1xPuIL9FQiI-Od6Hf0KS0ytlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920654887</pqid></control><display><type>article</type><title>Selecting radial basis function network centers with recursive orthogonal least squares training</title><source>IEEE Electronic Library (IEL)</source><creator>Gomm, J.B. ; Yu, D.L.</creator><creatorcontrib>Gomm, J.B. ; Yu, D.L.</creatorcontrib><description>Recursive orthogonal least squares (ROLS) is a numerically robust method for solving for the output layer weights of a radial basis function (RBF) network, and requires less computer memory than the batch alternative. In the paper, the use of ROLS is extended to selecting the centers of an RBF network. It is shown that the information available in an ROLS algorithm after network training can be used to sequentially select centers to minimize the network output error. This provides efficient methods for network reduction to achieve smaller architectures with acceptable accuracy and without retraining. Two selection methods are developed, forward and backward. The methods are illustrated in applications of RBF networks to modeling a nonlinear time series and a real multiinput-multioutput chemical process. The final network models obtained achieve acceptable accuracy with significant reductions in the number of required centers.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/72.839002</identifier><identifier>PMID: 18249762</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acceptability ; Accuracy ; Chemical processes ; Clustering algorithms ; Computer networks ; Least squares method ; Least squares methods ; Mathematical models ; Networks ; Neural networks ; Radial basis function ; Radial basis function networks ; Recursive ; Robustness ; Signal processing algorithms ; Training ; Training data ; Vectors</subject><ispartof>IEEE transaction on neural networks and learning systems, 2000, Vol.11 (2), p.306-314</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-f0b74c71e5131dfe541bf8cb49a2a749cd54c32bf6ec8c5162c19a8021b087e73</citedby><cites>FETCH-LOGICAL-c451t-f0b74c71e5131dfe541bf8cb49a2a749cd54c32bf6ec8c5162c19a8021b087e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/839002$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4021,27921,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/839002$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18249762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomm, J.B.</creatorcontrib><creatorcontrib>Yu, D.L.</creatorcontrib><title>Selecting radial basis function network centers with recursive orthogonal least squares training</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>Recursive orthogonal least squares (ROLS) is a numerically robust method for solving for the output layer weights of a radial basis function (RBF) network, and requires less computer memory than the batch alternative. In the paper, the use of ROLS is extended to selecting the centers of an RBF network. It is shown that the information available in an ROLS algorithm after network training can be used to sequentially select centers to minimize the network output error. This provides efficient methods for network reduction to achieve smaller architectures with acceptable accuracy and without retraining. Two selection methods are developed, forward and backward. The methods are illustrated in applications of RBF networks to modeling a nonlinear time series and a real multiinput-multioutput chemical process. The final network models obtained achieve acceptable accuracy with significant reductions in the number of required centers.</description><subject>Acceptability</subject><subject>Accuracy</subject><subject>Chemical processes</subject><subject>Clustering algorithms</subject><subject>Computer networks</subject><subject>Least squares method</subject><subject>Least squares methods</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Radial basis function</subject><subject>Radial basis function networks</subject><subject>Recursive</subject><subject>Robustness</subject><subject>Signal processing algorithms</subject><subject>Training</subject><subject>Training data</subject><subject>Vectors</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c1PHSEQAHDS1NTPQ68eGuJB08Mqw8cCR2OqNjHpoXpeWd6sovsWBbam_72Y99ImPdQTBH4zwzCEfAZ2DMDsiebHRljG-AeyBVZCw5gVH-ueSdVYzvUm2c75gTGQirWfyCYYLq1u-Ra5_Ykj-hKmO5rcIriR9i6HTId5qqdxohOWl5geqcepYMr0JZR7mtDPKYdfSGMq9_EuTjVwRJcLzc-zS5hpSS5MNe0u2RjcmHFvve6Qm_Nv12eXzdWPi-9np1eNlwpKM7BeS68BFQhYDKgk9IPxvbSOOy2tXyjpBe-HFr3xClruwTrDOPTMaNRihxyt8j6l-DxjLt0yZI_j6CaMc-4syFbU7vm7UgshlJTSVHn4X8mNaq0B_j7UmtfirMKDf-BDnFP9vfpAzloljXlr5esK-RRzTjh0TyksXfrdAeveBt5p3q0GXu2XdcK5X-Lir1xPuIL9FQiI-Od6Hf0KS0ytlQ</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Gomm, J.B.</creator><creator>Yu, D.L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>2000</creationdate><title>Selecting radial basis function network centers with recursive orthogonal least squares training</title><author>Gomm, J.B. ; Yu, D.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-f0b74c71e5131dfe541bf8cb49a2a749cd54c32bf6ec8c5162c19a8021b087e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Acceptability</topic><topic>Accuracy</topic><topic>Chemical processes</topic><topic>Clustering algorithms</topic><topic>Computer networks</topic><topic>Least squares method</topic><topic>Least squares methods</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Radial basis function</topic><topic>Radial basis function networks</topic><topic>Recursive</topic><topic>Robustness</topic><topic>Signal processing algorithms</topic><topic>Training</topic><topic>Training data</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Gomm, J.B.</creatorcontrib><creatorcontrib>Yu, D.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gomm, J.B.</au><au>Yu, D.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting radial basis function network centers with recursive orthogonal least squares training</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2000</date><risdate>2000</risdate><volume>11</volume><issue>2</issue><spage>306</spage><epage>314</epage><pages>306-314</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>Recursive orthogonal least squares (ROLS) is a numerically robust method for solving for the output layer weights of a radial basis function (RBF) network, and requires less computer memory than the batch alternative. In the paper, the use of ROLS is extended to selecting the centers of an RBF network. It is shown that the information available in an ROLS algorithm after network training can be used to sequentially select centers to minimize the network output error. This provides efficient methods for network reduction to achieve smaller architectures with acceptable accuracy and without retraining. Two selection methods are developed, forward and backward. The methods are illustrated in applications of RBF networks to modeling a nonlinear time series and a real multiinput-multioutput chemical process. The final network models obtained achieve acceptable accuracy with significant reductions in the number of required centers.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18249762</pmid><doi>10.1109/72.839002</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transaction on neural networks and learning systems, 2000, Vol.11 (2), p.306-314 |
issn | 1045-9227 2162-237X 1941-0093 2162-2388 |
language | eng |
recordid | cdi_crossref_primary_10_1109_72_839002 |
source | IEEE Electronic Library (IEL) |
subjects | Acceptability Accuracy Chemical processes Clustering algorithms Computer networks Least squares method Least squares methods Mathematical models Networks Neural networks Radial basis function Radial basis function networks Recursive Robustness Signal processing algorithms Training Training data Vectors |
title | Selecting radial basis function network centers with recursive orthogonal least squares training |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20radial%20basis%20function%20network%20centers%20with%20recursive%20orthogonal%20least%20squares%20training&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Gomm,%20J.B.&rft.date=2000&rft.volume=11&rft.issue=2&rft.spage=306&rft.epage=314&rft.pages=306-314&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.839002&rft_dat=%3Cproquest_RIE%3E2582275251%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920654887&rft_id=info:pmid/18249762&rft_ieee_id=839002&rfr_iscdi=true |