Information processing using dynamical chaos: neural networks implementation
In this work, we study information processing applications of complex dynamics and chaos in neural networks. We discuss mathematical models based on piecewise-linear maps which enable us to realize the basic functions of information processing using complex dynamics and chaos. Realizations of these...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural networks 1996-03, Vol.7 (2), p.290-299 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 2 |
container_start_page | 290 |
container_title | IEEE transactions on neural networks |
container_volume | 7 |
creator | Andreyev, Y.V. Belsky, Y.L. Dmitriev, A.S. Kuminov, D.A. |
description | In this work, we study information processing applications of complex dynamics and chaos in neural networks. We discuss mathematical models based on piecewise-linear maps which enable us to realize the basic functions of information processing using complex dynamics and chaos. Realizations of these models using recurrent neural-like systems are presented. |
doi_str_mv | 10.1109/72.485632 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_72_485632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>485632</ieee_id><sourcerecordid>28415523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-f0371e29bd18a8fc7cfccd6492045425d6f2a09f013584e4226a8e7123c7da483</originalsourceid><addsrcrecordid>eNp90L1LxDAYBvAgiqeng6uDdBDFoZrPJnGTw4-DAxedS0zfaLVNz6RF7r83euXcXPJBfjxJHoSOCL4kBOsrSS-5EgWjW2iPaE5yjDXbTmvMRa4plRO0H-M7xoQLXOyiCVFUCKHYHlrMvetCa_q689kydBZirP1rNvyO1cqbtramyeyb6eJ15mEIaeeh_-rCR8zqdtlAC77_DThAO840EQ7HeYqe726fZg_54vF-PrtZ5JYVpM8dZpIA1S8VUUY5K62ztiq4pum9nIqqcNRg7TBhQnHglBZGgSSUWVkZrtgUna9z04M_B4h92dbRQtMYD90QS8lSSvrjjzz7V1LFiRCUJXixhjZ0MQZw5TLUrQmrkuDyp-RS0nJdcrInY-jw0kL1J8dWEzgdgYmpPBeMt3XcOIaZ5lomdrxmNQBsTsdLvgF5Louv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28415523</pqid></control><display><type>article</type><title>Information processing using dynamical chaos: neural networks implementation</title><source>IEEE Electronic Library (IEL)</source><creator>Andreyev, Y.V. ; Belsky, Y.L. ; Dmitriev, A.S. ; Kuminov, D.A.</creator><creatorcontrib>Andreyev, Y.V. ; Belsky, Y.L. ; Dmitriev, A.S. ; Kuminov, D.A.</creatorcontrib><description>In this work, we study information processing applications of complex dynamics and chaos in neural networks. We discuss mathematical models based on piecewise-linear maps which enable us to realize the basic functions of information processing using complex dynamics and chaos. Realizations of these models using recurrent neural-like systems are presented.</description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/72.485632</identifier><identifier>PMID: 18255583</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Artificial neural networks ; Biological neural networks ; Chaos ; Computational efficiency ; Information processing ; Mathematical model ; Neural networks ; Piecewise linear techniques ; Recurrent neural networks ; Very large scale integration</subject><ispartof>IEEE transactions on neural networks, 1996-03, Vol.7 (2), p.290-299</ispartof><rights>1996 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-f0371e29bd18a8fc7cfccd6492045425d6f2a09f013584e4226a8e7123c7da483</citedby><cites>FETCH-LOGICAL-c361t-f0371e29bd18a8fc7cfccd6492045425d6f2a09f013584e4226a8e7123c7da483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/485632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/485632$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3039497$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18255583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andreyev, Y.V.</creatorcontrib><creatorcontrib>Belsky, Y.L.</creatorcontrib><creatorcontrib>Dmitriev, A.S.</creatorcontrib><creatorcontrib>Kuminov, D.A.</creatorcontrib><title>Information processing using dynamical chaos: neural networks implementation</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>In this work, we study information processing applications of complex dynamics and chaos in neural networks. We discuss mathematical models based on piecewise-linear maps which enable us to realize the basic functions of information processing using complex dynamics and chaos. Realizations of these models using recurrent neural-like systems are presented.</description><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Chaos</subject><subject>Computational efficiency</subject><subject>Information processing</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Piecewise linear techniques</subject><subject>Recurrent neural networks</subject><subject>Very large scale integration</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp90L1LxDAYBvAgiqeng6uDdBDFoZrPJnGTw4-DAxedS0zfaLVNz6RF7r83euXcXPJBfjxJHoSOCL4kBOsrSS-5EgWjW2iPaE5yjDXbTmvMRa4plRO0H-M7xoQLXOyiCVFUCKHYHlrMvetCa_q689kydBZirP1rNvyO1cqbtramyeyb6eJ15mEIaeeh_-rCR8zqdtlAC77_DThAO840EQ7HeYqe726fZg_54vF-PrtZ5JYVpM8dZpIA1S8VUUY5K62ztiq4pum9nIqqcNRg7TBhQnHglBZGgSSUWVkZrtgUna9z04M_B4h92dbRQtMYD90QS8lSSvrjjzz7V1LFiRCUJXixhjZ0MQZw5TLUrQmrkuDyp-RS0nJdcrInY-jw0kL1J8dWEzgdgYmpPBeMt3XcOIaZ5lomdrxmNQBsTsdLvgF5Louv</recordid><startdate>19960301</startdate><enddate>19960301</enddate><creator>Andreyev, Y.V.</creator><creator>Belsky, Y.L.</creator><creator>Dmitriev, A.S.</creator><creator>Kuminov, D.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19960301</creationdate><title>Information processing using dynamical chaos: neural networks implementation</title><author>Andreyev, Y.V. ; Belsky, Y.L. ; Dmitriev, A.S. ; Kuminov, D.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-f0371e29bd18a8fc7cfccd6492045425d6f2a09f013584e4226a8e7123c7da483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Chaos</topic><topic>Computational efficiency</topic><topic>Information processing</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Piecewise linear techniques</topic><topic>Recurrent neural networks</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Andreyev, Y.V.</creatorcontrib><creatorcontrib>Belsky, Y.L.</creatorcontrib><creatorcontrib>Dmitriev, A.S.</creatorcontrib><creatorcontrib>Kuminov, D.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Andreyev, Y.V.</au><au>Belsky, Y.L.</au><au>Dmitriev, A.S.</au><au>Kuminov, D.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information processing using dynamical chaos: neural networks implementation</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>1996-03-01</date><risdate>1996</risdate><volume>7</volume><issue>2</issue><spage>290</spage><epage>299</epage><pages>290-299</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>In this work, we study information processing applications of complex dynamics and chaos in neural networks. We discuss mathematical models based on piecewise-linear maps which enable us to realize the basic functions of information processing using complex dynamics and chaos. Realizations of these models using recurrent neural-like systems are presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18255583</pmid><doi>10.1109/72.485632</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transactions on neural networks, 1996-03, Vol.7 (2), p.290-299 |
issn | 1045-9227 1941-0093 |
language | eng |
recordid | cdi_crossref_primary_10_1109_72_485632 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Biological neural networks Chaos Computational efficiency Information processing Mathematical model Neural networks Piecewise linear techniques Recurrent neural networks Very large scale integration |
title | Information processing using dynamical chaos: neural networks implementation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20processing%20using%20dynamical%20chaos:%20neural%20networks%20implementation&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Andreyev,%20Y.V.&rft.date=1996-03-01&rft.volume=7&rft.issue=2&rft.spage=290&rft.epage=299&rft.pages=290-299&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.485632&rft_dat=%3Cproquest_RIE%3E28415523%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28415523&rft_id=info:pmid/18255583&rft_ieee_id=485632&rfr_iscdi=true |