Information processing using dynamical chaos: neural networks implementation

In this work, we study information processing applications of complex dynamics and chaos in neural networks. We discuss mathematical models based on piecewise-linear maps which enable us to realize the basic functions of information processing using complex dynamics and chaos. Realizations of these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks 1996-03, Vol.7 (2), p.290-299
Hauptverfasser: Andreyev, Y.V., Belsky, Y.L., Dmitriev, A.S., Kuminov, D.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 2
container_start_page 290
container_title IEEE transactions on neural networks
container_volume 7
creator Andreyev, Y.V.
Belsky, Y.L.
Dmitriev, A.S.
Kuminov, D.A.
description In this work, we study information processing applications of complex dynamics and chaos in neural networks. We discuss mathematical models based on piecewise-linear maps which enable us to realize the basic functions of information processing using complex dynamics and chaos. Realizations of these models using recurrent neural-like systems are presented.
doi_str_mv 10.1109/72.485632
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_72_485632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>485632</ieee_id><sourcerecordid>28415523</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-f0371e29bd18a8fc7cfccd6492045425d6f2a09f013584e4226a8e7123c7da483</originalsourceid><addsrcrecordid>eNp90L1LxDAYBvAgiqeng6uDdBDFoZrPJnGTw4-DAxedS0zfaLVNz6RF7r83euXcXPJBfjxJHoSOCL4kBOsrSS-5EgWjW2iPaE5yjDXbTmvMRa4plRO0H-M7xoQLXOyiCVFUCKHYHlrMvetCa_q689kydBZirP1rNvyO1cqbtramyeyb6eJ15mEIaeeh_-rCR8zqdtlAC77_DThAO840EQ7HeYqe726fZg_54vF-PrtZ5JYVpM8dZpIA1S8VUUY5K62ztiq4pum9nIqqcNRg7TBhQnHglBZGgSSUWVkZrtgUna9z04M_B4h92dbRQtMYD90QS8lSSvrjjzz7V1LFiRCUJXixhjZ0MQZw5TLUrQmrkuDyp-RS0nJdcrInY-jw0kL1J8dWEzgdgYmpPBeMt3XcOIaZ5lomdrxmNQBsTsdLvgF5Louv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28415523</pqid></control><display><type>article</type><title>Information processing using dynamical chaos: neural networks implementation</title><source>IEEE Electronic Library (IEL)</source><creator>Andreyev, Y.V. ; Belsky, Y.L. ; Dmitriev, A.S. ; Kuminov, D.A.</creator><creatorcontrib>Andreyev, Y.V. ; Belsky, Y.L. ; Dmitriev, A.S. ; Kuminov, D.A.</creatorcontrib><description>In this work, we study information processing applications of complex dynamics and chaos in neural networks. We discuss mathematical models based on piecewise-linear maps which enable us to realize the basic functions of information processing using complex dynamics and chaos. Realizations of these models using recurrent neural-like systems are presented.</description><identifier>ISSN: 1045-9227</identifier><identifier>EISSN: 1941-0093</identifier><identifier>DOI: 10.1109/72.485632</identifier><identifier>PMID: 18255583</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Artificial neural networks ; Biological neural networks ; Chaos ; Computational efficiency ; Information processing ; Mathematical model ; Neural networks ; Piecewise linear techniques ; Recurrent neural networks ; Very large scale integration</subject><ispartof>IEEE transactions on neural networks, 1996-03, Vol.7 (2), p.290-299</ispartof><rights>1996 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-f0371e29bd18a8fc7cfccd6492045425d6f2a09f013584e4226a8e7123c7da483</citedby><cites>FETCH-LOGICAL-c361t-f0371e29bd18a8fc7cfccd6492045425d6f2a09f013584e4226a8e7123c7da483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/485632$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/485632$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3039497$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18255583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andreyev, Y.V.</creatorcontrib><creatorcontrib>Belsky, Y.L.</creatorcontrib><creatorcontrib>Dmitriev, A.S.</creatorcontrib><creatorcontrib>Kuminov, D.A.</creatorcontrib><title>Information processing using dynamical chaos: neural networks implementation</title><title>IEEE transactions on neural networks</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>In this work, we study information processing applications of complex dynamics and chaos in neural networks. We discuss mathematical models based on piecewise-linear maps which enable us to realize the basic functions of information processing using complex dynamics and chaos. Realizations of these models using recurrent neural-like systems are presented.</description><subject>Artificial neural networks</subject><subject>Biological neural networks</subject><subject>Chaos</subject><subject>Computational efficiency</subject><subject>Information processing</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Piecewise linear techniques</subject><subject>Recurrent neural networks</subject><subject>Very large scale integration</subject><issn>1045-9227</issn><issn>1941-0093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNp90L1LxDAYBvAgiqeng6uDdBDFoZrPJnGTw4-DAxedS0zfaLVNz6RF7r83euXcXPJBfjxJHoSOCL4kBOsrSS-5EgWjW2iPaE5yjDXbTmvMRa4plRO0H-M7xoQLXOyiCVFUCKHYHlrMvetCa_q689kydBZirP1rNvyO1cqbtramyeyb6eJ15mEIaeeh_-rCR8zqdtlAC77_DThAO840EQ7HeYqe726fZg_54vF-PrtZ5JYVpM8dZpIA1S8VUUY5K62ztiq4pum9nIqqcNRg7TBhQnHglBZGgSSUWVkZrtgUna9z04M_B4h92dbRQtMYD90QS8lSSvrjjzz7V1LFiRCUJXixhjZ0MQZw5TLUrQmrkuDyp-RS0nJdcrInY-jw0kL1J8dWEzgdgYmpPBeMt3XcOIaZ5lomdrxmNQBsTsdLvgF5Louv</recordid><startdate>19960301</startdate><enddate>19960301</enddate><creator>Andreyev, Y.V.</creator><creator>Belsky, Y.L.</creator><creator>Dmitriev, A.S.</creator><creator>Kuminov, D.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19960301</creationdate><title>Information processing using dynamical chaos: neural networks implementation</title><author>Andreyev, Y.V. ; Belsky, Y.L. ; Dmitriev, A.S. ; Kuminov, D.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-f0371e29bd18a8fc7cfccd6492045425d6f2a09f013584e4226a8e7123c7da483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Artificial neural networks</topic><topic>Biological neural networks</topic><topic>Chaos</topic><topic>Computational efficiency</topic><topic>Information processing</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Piecewise linear techniques</topic><topic>Recurrent neural networks</topic><topic>Very large scale integration</topic><toplevel>online_resources</toplevel><creatorcontrib>Andreyev, Y.V.</creatorcontrib><creatorcontrib>Belsky, Y.L.</creatorcontrib><creatorcontrib>Dmitriev, A.S.</creatorcontrib><creatorcontrib>Kuminov, D.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Andreyev, Y.V.</au><au>Belsky, Y.L.</au><au>Dmitriev, A.S.</au><au>Kuminov, D.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information processing using dynamical chaos: neural networks implementation</atitle><jtitle>IEEE transactions on neural networks</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>1996-03-01</date><risdate>1996</risdate><volume>7</volume><issue>2</issue><spage>290</spage><epage>299</epage><pages>290-299</pages><issn>1045-9227</issn><eissn>1941-0093</eissn><coden>ITNNEP</coden><abstract>In this work, we study information processing applications of complex dynamics and chaos in neural networks. We discuss mathematical models based on piecewise-linear maps which enable us to realize the basic functions of information processing using complex dynamics and chaos. Realizations of these models using recurrent neural-like systems are presented.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18255583</pmid><doi>10.1109/72.485632</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transactions on neural networks, 1996-03, Vol.7 (2), p.290-299
issn 1045-9227
1941-0093
language eng
recordid cdi_crossref_primary_10_1109_72_485632
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Biological neural networks
Chaos
Computational efficiency
Information processing
Mathematical model
Neural networks
Piecewise linear techniques
Recurrent neural networks
Very large scale integration
title Information processing using dynamical chaos: neural networks implementation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information%20processing%20using%20dynamical%20chaos:%20neural%20networks%20implementation&rft.jtitle=IEEE%20transactions%20on%20neural%20networks&rft.au=Andreyev,%20Y.V.&rft.date=1996-03-01&rft.volume=7&rft.issue=2&rft.spage=290&rft.epage=299&rft.pages=290-299&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.485632&rft_dat=%3Cproquest_RIE%3E28415523%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28415523&rft_id=info:pmid/18255583&rft_ieee_id=485632&rfr_iscdi=true