Exploiting fine-grained idle periods in networks of workstations

Studies have shown that for a significant fraction of the time, workstations are idle. In this paper, we present a new scheduling policy called Linger-Longer that exploits the fine-grained availability of workstations to run sequential and parallel jobs. We present a two-level workload characterizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2000-07, Vol.11 (7), p.683-698
Hauptverfasser: Kyung Dong Ryu, Hollingsworth, J.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Studies have shown that for a significant fraction of the time, workstations are idle. In this paper, we present a new scheduling policy called Linger-Longer that exploits the fine-grained availability of workstations to run sequential and parallel jobs. We present a two-level workload characterization study and use it to simulate a cluster of workstations running our new policy. We compare two variations of our policy to two previous policies: Immediate-Eviction and Pause-and-Migrate. Our study shows that the Linger-Longer policy can improve the throughput of foreign jobs on a cluster by 60 percent with only a 0.5 percent slowdown of local jobs. For parallel computing, we show that the Linger-Longer policy outperforms reconfiguration strategies when the processor utilization by the local process is 20 percent or less in both synthetic bulk synchronous and real data-parallel applications.
ISSN:1045-9219
1558-2183
DOI:10.1109/71.877793