Unifying and optimizing parallel linear algebra algorithms

Two issues in linear algebra algorithms for multicomputers are addressed. First, how to unify parallel implementations of the same algorithm in a decomposition-independent way. Second, how to optimize naive parallel programs maintaining the decomposition independence. Several matrix decompositions a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 1993-12, Vol.4 (12), p.1382-1397
Hauptverfasser: Angelaccio, M., Colajanni, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1397
container_issue 12
container_start_page 1382
container_title IEEE transactions on parallel and distributed systems
container_volume 4
creator Angelaccio, M.
Colajanni, M.
description Two issues in linear algebra algorithms for multicomputers are addressed. First, how to unify parallel implementations of the same algorithm in a decomposition-independent way. Second, how to optimize naive parallel programs maintaining the decomposition independence. Several matrix decompositions are viewed as instances of a more general allocation function called subcube matrix decomposition. By this meta-decomposition, a programming environment characterized by general primitives that allow one to design meta-algorithms independently of a particular decomposition. The authors apply such a framework to the parallel solution of dense matrices. This demonstrates that most of the existing algorithms can be derived by suitably setting the primitives used in the meta-algorithm. A further application of this programming style concerns the optimization of parallel algorithms. The idea to overlap communication and computation has been extended from 1-D decompositions to 2-D decompositions. Thus, a first attempt towards a decomposition-independent definition of such optimization strategies is provided.< >
doi_str_mv 10.1109/71.250119
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_71_250119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>250119</ieee_id><sourcerecordid>28426841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-84174d8e5a1f757c40dd7ee2456b6f5cb60b9bf85da87459263007a51499ec7f3</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EEqUwsDJlQEgMKT7Hjm02VPElVWKhc3Rx7GLkfGCnA_z1pGrV6d3pfvee9Ai5BroAoPpBwoIJCqBPyAyEUDkDVZxOM-Ui1wz0OblI6ZtS4ILyGXlcd979-m6TYddk_TD61v_t1gEjhmBDFnxnMWYYNraOuNM--vGrTZfkzGFI9uqgc7J-ef5cvuWrj9f35dMqN4zBmCsOkjfKCgQnhTScNo20lnFR1qUTpi5prWunRINKcqFZWVAqUQDX2hrpijm52_sOsf_Z2jRWrU_GhoCd7bepYoqzckqZwPs9aGKfUrSuGqJvMf5WQKtdO5WEat_OxN4eTDEZDC5iZ3w6PhSaaqGKCbvZY95ae7wePP4B5phrNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28426841</pqid></control><display><type>article</type><title>Unifying and optimizing parallel linear algebra algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Angelaccio, M. ; Colajanni, M.</creator><creatorcontrib>Angelaccio, M. ; Colajanni, M.</creatorcontrib><description>Two issues in linear algebra algorithms for multicomputers are addressed. First, how to unify parallel implementations of the same algorithm in a decomposition-independent way. Second, how to optimize naive parallel programs maintaining the decomposition independence. Several matrix decompositions are viewed as instances of a more general allocation function called subcube matrix decomposition. By this meta-decomposition, a programming environment characterized by general primitives that allow one to design meta-algorithms independently of a particular decomposition. The authors apply such a framework to the parallel solution of dense matrices. This demonstrates that most of the existing algorithms can be derived by suitably setting the primitives used in the meta-algorithm. A further application of this programming style concerns the optimization of parallel algorithms. The idea to overlap communication and computation has been extended from 1-D decompositions to 2-D decompositions. Thus, a first attempt towards a decomposition-independent definition of such optimization strategies is provided.&lt; &gt;</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/71.250119</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithm design and analysis ; Applied sciences ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Concurrent computing ; Exact sciences and technology ; Hypercubes ; Linear algebra ; Linear programming ; Matrix decomposition ; Parallel algorithms ; Parallel programming ; Performance analysis ; Programming environments ; Software</subject><ispartof>IEEE transactions on parallel and distributed systems, 1993-12, Vol.4 (12), p.1382-1397</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-84174d8e5a1f757c40dd7ee2456b6f5cb60b9bf85da87459263007a51499ec7f3</citedby><cites>FETCH-LOGICAL-c221t-84174d8e5a1f757c40dd7ee2456b6f5cb60b9bf85da87459263007a51499ec7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/250119$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/250119$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3909583$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Angelaccio, M.</creatorcontrib><creatorcontrib>Colajanni, M.</creatorcontrib><title>Unifying and optimizing parallel linear algebra algorithms</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Two issues in linear algebra algorithms for multicomputers are addressed. First, how to unify parallel implementations of the same algorithm in a decomposition-independent way. Second, how to optimize naive parallel programs maintaining the decomposition independence. Several matrix decompositions are viewed as instances of a more general allocation function called subcube matrix decomposition. By this meta-decomposition, a programming environment characterized by general primitives that allow one to design meta-algorithms independently of a particular decomposition. The authors apply such a framework to the parallel solution of dense matrices. This demonstrates that most of the existing algorithms can be derived by suitably setting the primitives used in the meta-algorithm. A further application of this programming style concerns the optimization of parallel algorithms. The idea to overlap communication and computation has been extended from 1-D decompositions to 2-D decompositions. Thus, a first attempt towards a decomposition-independent definition of such optimization strategies is provided.&lt; &gt;</description><subject>Algorithm design and analysis</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Concurrent computing</subject><subject>Exact sciences and technology</subject><subject>Hypercubes</subject><subject>Linear algebra</subject><subject>Linear programming</subject><subject>Matrix decomposition</subject><subject>Parallel algorithms</subject><subject>Parallel programming</subject><subject>Performance analysis</subject><subject>Programming environments</subject><subject>Software</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNo9kL1PwzAQxS0EEqUwsDJlQEgMKT7Hjm02VPElVWKhc3Rx7GLkfGCnA_z1pGrV6d3pfvee9Ai5BroAoPpBwoIJCqBPyAyEUDkDVZxOM-Ui1wz0OblI6ZtS4ILyGXlcd979-m6TYddk_TD61v_t1gEjhmBDFnxnMWYYNraOuNM--vGrTZfkzGFI9uqgc7J-ef5cvuWrj9f35dMqN4zBmCsOkjfKCgQnhTScNo20lnFR1qUTpi5prWunRINKcqFZWVAqUQDX2hrpijm52_sOsf_Z2jRWrU_GhoCd7bepYoqzckqZwPs9aGKfUrSuGqJvMf5WQKtdO5WEat_OxN4eTDEZDC5iZ3w6PhSaaqGKCbvZY95ae7wePP4B5phrNg</recordid><startdate>19931201</startdate><enddate>19931201</enddate><creator>Angelaccio, M.</creator><creator>Colajanni, M.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19931201</creationdate><title>Unifying and optimizing parallel linear algebra algorithms</title><author>Angelaccio, M. ; Colajanni, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-84174d8e5a1f757c40dd7ee2456b6f5cb60b9bf85da87459263007a51499ec7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Algorithm design and analysis</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Concurrent computing</topic><topic>Exact sciences and technology</topic><topic>Hypercubes</topic><topic>Linear algebra</topic><topic>Linear programming</topic><topic>Matrix decomposition</topic><topic>Parallel algorithms</topic><topic>Parallel programming</topic><topic>Performance analysis</topic><topic>Programming environments</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angelaccio, M.</creatorcontrib><creatorcontrib>Colajanni, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Angelaccio, M.</au><au>Colajanni, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unifying and optimizing parallel linear algebra algorithms</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>1993-12-01</date><risdate>1993</risdate><volume>4</volume><issue>12</issue><spage>1382</spage><epage>1397</epage><pages>1382-1397</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Two issues in linear algebra algorithms for multicomputers are addressed. First, how to unify parallel implementations of the same algorithm in a decomposition-independent way. Second, how to optimize naive parallel programs maintaining the decomposition independence. Several matrix decompositions are viewed as instances of a more general allocation function called subcube matrix decomposition. By this meta-decomposition, a programming environment characterized by general primitives that allow one to design meta-algorithms independently of a particular decomposition. The authors apply such a framework to the parallel solution of dense matrices. This demonstrates that most of the existing algorithms can be derived by suitably setting the primitives used in the meta-algorithm. A further application of this programming style concerns the optimization of parallel algorithms. The idea to overlap communication and computation has been extended from 1-D decompositions to 2-D decompositions. Thus, a first attempt towards a decomposition-independent definition of such optimization strategies is provided.&lt; &gt;</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/71.250119</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 1993-12, Vol.4 (12), p.1382-1397
issn 1045-9219
1558-2183
language eng
recordid cdi_crossref_primary_10_1109_71_250119
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Applied sciences
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Concurrent computing
Exact sciences and technology
Hypercubes
Linear algebra
Linear programming
Matrix decomposition
Parallel algorithms
Parallel programming
Performance analysis
Programming environments
Software
title Unifying and optimizing parallel linear algebra algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unifying%20and%20optimizing%20parallel%20linear%20algebra%20algorithms&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Angelaccio,%20M.&rft.date=1993-12-01&rft.volume=4&rft.issue=12&rft.spage=1382&rft.epage=1397&rft.pages=1382-1397&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/71.250119&rft_dat=%3Cproquest_RIE%3E28426841%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28426841&rft_id=info:pmid/&rft_ieee_id=250119&rfr_iscdi=true