Relating statistical MOSFET model parameter variabilities to IC manufacturing process fluctuations enabling realistic worst case design

The implementation of a viable statistical circuit design methodology requiring detailed knowledge of the variabilities of, and correlations among, the circuit simulator model parameters utilized by designers, and the determination of the important relationships between these CAD model parameter var...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on semiconductor manufacturing 1994-08, Vol.7 (3), p.306-318
Hauptverfasser: Power, J.A., Donnellan, B., Mathewson, A., Lane, W.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 3
container_start_page 306
container_title IEEE transactions on semiconductor manufacturing
container_volume 7
creator Power, J.A.
Donnellan, B.
Mathewson, A.
Lane, W.A.
description The implementation of a viable statistical circuit design methodology requiring detailed knowledge of the variabilities of, and correlations among, the circuit simulator model parameters utilized by designers, and the determination of the important relationships between these CAD model parameter variabilities and the process variabilities causing them is presented. This work addresses the above requirements by detailing a new framework which was adopted for a 2-/spl mu/m CMOS technology to enable realistic statistical circuit performance prediction prior to manufacture. Issues relating to MOSFET modeling, the derivation of fast "direct" parameter extraction methodologies suitable for rapid parameter generation, the employment of multivariate statistical techniques to analyze statistical parametric data, and the linking of the CAD model parameter variations to variabilities in process quantities are discussed. In this approach the correlated set of model parameters is reduced to a smaller and more manageable set of uncorrelated process-related factors. The ensuing construction and validation of realistic statistical circuit performance procedures is also discussed. Comparisons between measured and simulated variabilities of device characteristics is utilized to demonstrate the accuracy of the techniques described. The advantages of the proposed approach over more traditional "worst case" design methodologies are demonstrated.< >
doi_str_mv 10.1109/66.311334
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_66_311334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>311334</ieee_id><sourcerecordid>29573230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3184-fc275683228fa6a9c5e952fbad29131cf9be8d06d5ef4dde94ee7b5a386982a13</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EEsvCgSsnHxAShxR_xI59RKtCK7Wq1MI5mjjjyshJFk8C4hf0bzfLrnrtaaSZZ54Z6WXsvRRnUgr_xdozLaXW9Qu2kca4SunavGQb4XxdWSOa1-wN0S8hZF37ZsMebjHDnMZ7TvNaaU4BMr--uft2_oMPU4-Z76HAgDMW_gdKgi7lNCckPk_8cscHGJcIYV7KQbIvU0AiHvOytlbhNBLHEbp8mBaE_P8E_zsVmnkAQt4jpfvxLXsVIRO-O9Ut-7l-sLuorm6-X-6-XlVBS1dXMajGWKeVchEs-GDQGxU76JWXWoboO3S9sL3BWPc9-hqx6QxoZ71TIPWWfTp6109_L0hzOyQKmDOMOC3UKm8arbR4HnTGCGPM86A1qlFrJFv2-QiGMhEVjO2-pAHKv1aK9hBea217DG9lP56kQGsgscAYEj0t1Mo4o-2KfThiCRGfpifHI7oxo6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26527213</pqid></control><display><type>article</type><title>Relating statistical MOSFET model parameter variabilities to IC manufacturing process fluctuations enabling realistic worst case design</title><source>IEEE Electronic Library (IEL)</source><creator>Power, J.A. ; Donnellan, B. ; Mathewson, A. ; Lane, W.A.</creator><creatorcontrib>Power, J.A. ; Donnellan, B. ; Mathewson, A. ; Lane, W.A.</creatorcontrib><description>The implementation of a viable statistical circuit design methodology requiring detailed knowledge of the variabilities of, and correlations among, the circuit simulator model parameters utilized by designers, and the determination of the important relationships between these CAD model parameter variabilities and the process variabilities causing them is presented. This work addresses the above requirements by detailing a new framework which was adopted for a 2-/spl mu/m CMOS technology to enable realistic statistical circuit performance prediction prior to manufacture. Issues relating to MOSFET modeling, the derivation of fast "direct" parameter extraction methodologies suitable for rapid parameter generation, the employment of multivariate statistical techniques to analyze statistical parametric data, and the linking of the CAD model parameter variations to variabilities in process quantities are discussed. In this approach the correlated set of model parameters is reduced to a smaller and more manageable set of uncorrelated process-related factors. The ensuing construction and validation of realistic statistical circuit performance procedures is also discussed. Comparisons between measured and simulated variabilities of device characteristics is utilized to demonstrate the accuracy of the techniques described. The advantages of the proposed approach over more traditional "worst case" design methodologies are demonstrated.&lt; &gt;</description><identifier>ISSN: 0894-6507</identifier><identifier>EISSN: 1558-2345</identifier><identifier>DOI: 10.1109/66.311334</identifier><identifier>CODEN: ITSMED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit optimization ; Circuit simulation ; Circuit synthesis ; CMOS technology ; Design automation ; Design. Technologies. Operation analysis. Testing ; Electronics ; Exact sciences and technology ; Integrated circuit modeling ; Integrated circuits ; Manufacturing ; MOSFET circuits ; Parameter extraction ; Semiconductor device modeling ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>IEEE transactions on semiconductor manufacturing, 1994-08, Vol.7 (3), p.306-318</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3184-fc275683228fa6a9c5e952fbad29131cf9be8d06d5ef4dde94ee7b5a386982a13</citedby><cites>FETCH-LOGICAL-c3184-fc275683228fa6a9c5e952fbad29131cf9be8d06d5ef4dde94ee7b5a386982a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/311334$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/311334$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4258536$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Power, J.A.</creatorcontrib><creatorcontrib>Donnellan, B.</creatorcontrib><creatorcontrib>Mathewson, A.</creatorcontrib><creatorcontrib>Lane, W.A.</creatorcontrib><title>Relating statistical MOSFET model parameter variabilities to IC manufacturing process fluctuations enabling realistic worst case design</title><title>IEEE transactions on semiconductor manufacturing</title><addtitle>TSM</addtitle><description>The implementation of a viable statistical circuit design methodology requiring detailed knowledge of the variabilities of, and correlations among, the circuit simulator model parameters utilized by designers, and the determination of the important relationships between these CAD model parameter variabilities and the process variabilities causing them is presented. This work addresses the above requirements by detailing a new framework which was adopted for a 2-/spl mu/m CMOS technology to enable realistic statistical circuit performance prediction prior to manufacture. Issues relating to MOSFET modeling, the derivation of fast "direct" parameter extraction methodologies suitable for rapid parameter generation, the employment of multivariate statistical techniques to analyze statistical parametric data, and the linking of the CAD model parameter variations to variabilities in process quantities are discussed. In this approach the correlated set of model parameters is reduced to a smaller and more manageable set of uncorrelated process-related factors. The ensuing construction and validation of realistic statistical circuit performance procedures is also discussed. Comparisons between measured and simulated variabilities of device characteristics is utilized to demonstrate the accuracy of the techniques described. The advantages of the proposed approach over more traditional "worst case" design methodologies are demonstrated.&lt; &gt;</description><subject>Applied sciences</subject><subject>Circuit optimization</subject><subject>Circuit simulation</subject><subject>Circuit synthesis</subject><subject>CMOS technology</subject><subject>Design automation</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>Manufacturing</subject><subject>MOSFET circuits</subject><subject>Parameter extraction</subject><subject>Semiconductor device modeling</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0894-6507</issn><issn>1558-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EEsvCgSsnHxAShxR_xI59RKtCK7Wq1MI5mjjjyshJFk8C4hf0bzfLrnrtaaSZZ54Z6WXsvRRnUgr_xdozLaXW9Qu2kca4SunavGQb4XxdWSOa1-wN0S8hZF37ZsMebjHDnMZ7TvNaaU4BMr--uft2_oMPU4-Z76HAgDMW_gdKgi7lNCckPk_8cscHGJcIYV7KQbIvU0AiHvOytlbhNBLHEbp8mBaE_P8E_zsVmnkAQt4jpfvxLXsVIRO-O9Ut-7l-sLuorm6-X-6-XlVBS1dXMajGWKeVchEs-GDQGxU76JWXWoboO3S9sL3BWPc9-hqx6QxoZ71TIPWWfTp6109_L0hzOyQKmDOMOC3UKm8arbR4HnTGCGPM86A1qlFrJFv2-QiGMhEVjO2-pAHKv1aK9hBea217DG9lP56kQGsgscAYEj0t1Mo4o-2KfThiCRGfpifHI7oxo6c</recordid><startdate>19940801</startdate><enddate>19940801</enddate><creator>Power, J.A.</creator><creator>Donnellan, B.</creator><creator>Mathewson, A.</creator><creator>Lane, W.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19940801</creationdate><title>Relating statistical MOSFET model parameter variabilities to IC manufacturing process fluctuations enabling realistic worst case design</title><author>Power, J.A. ; Donnellan, B. ; Mathewson, A. ; Lane, W.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3184-fc275683228fa6a9c5e952fbad29131cf9be8d06d5ef4dde94ee7b5a386982a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Circuit optimization</topic><topic>Circuit simulation</topic><topic>Circuit synthesis</topic><topic>CMOS technology</topic><topic>Design automation</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>Manufacturing</topic><topic>MOSFET circuits</topic><topic>Parameter extraction</topic><topic>Semiconductor device modeling</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Power, J.A.</creatorcontrib><creatorcontrib>Donnellan, B.</creatorcontrib><creatorcontrib>Mathewson, A.</creatorcontrib><creatorcontrib>Lane, W.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on semiconductor manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Power, J.A.</au><au>Donnellan, B.</au><au>Mathewson, A.</au><au>Lane, W.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relating statistical MOSFET model parameter variabilities to IC manufacturing process fluctuations enabling realistic worst case design</atitle><jtitle>IEEE transactions on semiconductor manufacturing</jtitle><stitle>TSM</stitle><date>1994-08-01</date><risdate>1994</risdate><volume>7</volume><issue>3</issue><spage>306</spage><epage>318</epage><pages>306-318</pages><issn>0894-6507</issn><eissn>1558-2345</eissn><coden>ITSMED</coden><abstract>The implementation of a viable statistical circuit design methodology requiring detailed knowledge of the variabilities of, and correlations among, the circuit simulator model parameters utilized by designers, and the determination of the important relationships between these CAD model parameter variabilities and the process variabilities causing them is presented. This work addresses the above requirements by detailing a new framework which was adopted for a 2-/spl mu/m CMOS technology to enable realistic statistical circuit performance prediction prior to manufacture. Issues relating to MOSFET modeling, the derivation of fast "direct" parameter extraction methodologies suitable for rapid parameter generation, the employment of multivariate statistical techniques to analyze statistical parametric data, and the linking of the CAD model parameter variations to variabilities in process quantities are discussed. In this approach the correlated set of model parameters is reduced to a smaller and more manageable set of uncorrelated process-related factors. The ensuing construction and validation of realistic statistical circuit performance procedures is also discussed. Comparisons between measured and simulated variabilities of device characteristics is utilized to demonstrate the accuracy of the techniques described. The advantages of the proposed approach over more traditional "worst case" design methodologies are demonstrated.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/66.311334</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0894-6507
ispartof IEEE transactions on semiconductor manufacturing, 1994-08, Vol.7 (3), p.306-318
issn 0894-6507
1558-2345
language eng
recordid cdi_crossref_primary_10_1109_66_311334
source IEEE Electronic Library (IEL)
subjects Applied sciences
Circuit optimization
Circuit simulation
Circuit synthesis
CMOS technology
Design automation
Design. Technologies. Operation analysis. Testing
Electronics
Exact sciences and technology
Integrated circuit modeling
Integrated circuits
Manufacturing
MOSFET circuits
Parameter extraction
Semiconductor device modeling
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Relating statistical MOSFET model parameter variabilities to IC manufacturing process fluctuations enabling realistic worst case design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T21%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relating%20statistical%20MOSFET%20model%20parameter%20variabilities%20to%20IC%20manufacturing%20process%20fluctuations%20enabling%20realistic%20worst%20case%20design&rft.jtitle=IEEE%20transactions%20on%20semiconductor%20manufacturing&rft.au=Power,%20J.A.&rft.date=1994-08-01&rft.volume=7&rft.issue=3&rft.spage=306&rft.epage=318&rft.pages=306-318&rft.issn=0894-6507&rft.eissn=1558-2345&rft.coden=ITSMED&rft_id=info:doi/10.1109/66.311334&rft_dat=%3Cproquest_RIE%3E29573230%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26527213&rft_id=info:pmid/&rft_ieee_id=311334&rfr_iscdi=true